|
|
Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis |
Pengfei Zhao1, Yating Wang2, Xiao Yu1, Yabing Nan1, Shi Liu1, Bin Li2, Zhumei Cui3( ), Zhihua Liu1( ) |
1. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 2. Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 3. Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China |
|
|
Abstract Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
|
Keywords
ovarian cancer
lncRNA LOC646029
metastasis
microRNA 627-3p
SPRED1
|
Corresponding Author(s):
Zhumei Cui,Zhihua Liu
|
Just Accepted Date: 30 May 2023
Online First Date: 04 July 2023
Issue Date: 07 December 2023
|
|
1 |
H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
https://doi.org/10.3322/caac.21660
|
2 |
UA Matulonis, AK Sood, L Fallowfield, BE Howitt, J Sehouli, BY Karlan. Ovarian cancer. Nat Rev Dis Primers 2016; 2(1): 16061
https://doi.org/10.1038/nrdp.2016.61
|
3 |
SEER. SEER stat fact sheets: ovarian cancer. 2022. Available at the website of SEER, National Cancer Institute, NIH
|
4 |
GJ Goodall, VO Wickramasinghe. RNA in cancer. Nat Rev Cancer 2021; 21(1): 22–36
https://doi.org/10.1038/s41568-020-00306-0
|
5 |
KC Wang, HY Chang. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904–914
https://doi.org/10.1016/j.molcel.2011.08.018
|
6 |
Y Nan, Q Luo, X Wu, S Liu, P Zhao, W Chang, A Zhou, Z Liu. DLGAP1-AS2-mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma. Cancer Res 2022; 82(16): 2887–2903
https://doi.org/10.1158/0008-5472.CAN-22-0717
|
7 |
J Liu, ZX Liu, QN Wu, YX Lu, CW Wong, L Miao, Y Wang, Z Wang, Y Jin, MM He, C Ren, DS Wang, DL Chen, HY Pu, L Feng, B Li, D Xie, MS Zeng, P Huang, A Lin, D Lin, RH Xu, HQ Ju. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun 2020; 11(1): 1507
https://doi.org/10.1038/s41467-020-15112-3
|
8 |
L Xu, L Huan, T Guo, Y Wu, Y Liu, Q Wang, S Huang, Y Xu, L Liang, X He. lncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene 2020; 39(46): 7005–7018
https://doi.org/10.1038/s41388-020-01512-8
|
9 |
L Statello, CJ Guo, LL Chen, M Huarte. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96–118
https://doi.org/10.1038/s41580-020-00315-9
|
10 |
ST Xue, B Zheng, SQ Cao, JC Ding, GS Hu, W Liu, C Chen. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer 2022; 21(1): 69
https://doi.org/10.1186/s12943-022-01539-3
|
11 |
ZQ Zheng, ZX Li, GQ Zhou, L Lin, LL Zhang, JW Lv, XD Huang, RQ Liu, F Chen, XJ He, J Kou, J Zhang, X Wen, YQ Li, J Ma, N Liu, Y Sun. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res 2019; 79(18): 4612–4626
https://doi.org/10.1158/0008-5472.CAN-19-0799
|
12 |
M Zhang, Y Wang, L Jiang, X Song, A Zheng, H Gao, M Wei, L Zhao. lncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Exp Clin Cancer Res 2021; 40(1): 41
https://doi.org/10.1186/s13046-021-01844-7
|
13 |
C Lorenzo, F McCormick. SPRED proteins and their roles in signal transduction, development, and malignancy. Genes Dev 2020; 34(21–22): 1410–1421
https://doi.org/10.1101/gad.341222.120
|
14 |
G Spurlock, E Bennett, N Chuzhanova, N Thomas, HP Jim, L Side, S Davies, E Haan, B Kerr, SM Huson, M Upadhyaya. SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype. J Med Genet 2009; 46(7): 431–437
https://doi.org/10.1136/jmg.2008.065474
|
15 |
T Wakioka, A Sasaki, R Kato, T Shouda, A Matsumoto, K Miyoshi, M Tsuneoka, S Komiya, R Baron, A Yoshimura. Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001; 412(6847): 647–651
https://doi.org/10.1038/35088082
|
16 |
J Ablain, S Liu, G Moriceau, RS Lo, LI Zon. SPRED1 deletion confers resistance to MAPK inhibition in melanoma. J Exp Med 2021; 218(3): e20201097
https://doi.org/10.1084/jem.20201097
|
17 |
J Qiao, C Liang, D Zhao, LXT Nguyen, F Chen, S Suo, DH Hoang, F Pellicano, IR Rodriguez, Y Elhajmoussa, L Ghoda, A Yoshimura, AS Stein, H Ali, P Koller, D Perrotti, M Copland, A Han, BA Zhang, G Marcucci. Spred1 deficit promotes treatment resistance and transformation of chronic phase CML. Leukemia 2022; 36(2): 492–506
https://doi.org/10.1038/s41375-021-01423-x
|
18 |
CF Jiang, ZM Shi, DM Li, YC Qian, Y Ren, XM Bai, YX Xie, L Wang, X Ge, WT Liu, LL Zhen, LZ Liu, BH Jiang. Estrogen-induced miR-196a elevation promotes tumor growth and metastasis via targeting SPRED1 in breast cancer. Mol Cancer 2018; 17(1): 83
https://doi.org/10.1186/s12943-018-0830-0
|
19 |
IM Dykes, C Emanueli. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 2017; 15(3): 177–186
https://doi.org/10.1016/j.gpb.2016.12.005
|
20 |
Y Chen, X Wang. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127–D131
https://doi.org/10.1093/nar/gkz757
|
21 |
SP Mo, JM Coulson, IA Prior. RAS variant signalling. Biochem Soc Trans 2018; 46(5): 1325–1332
https://doi.org/10.1042/BST20180173
|
22 |
IA Prior, PD Lewis, C Mattos. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72(10): 2457–2467
https://doi.org/10.1158/0008-5472.CAN-11-2612
|
23 |
A Nonami, T Taketomi, A Kimura, K Saeki, H Takaki, T Sanada, K Taniguchi, M Harada, R Kato, A Yoshimura. The Sprouty-related protein, Spred-1, localizes in a lipid raft/caveola and inhibits ERK activation in collaboration with caveolin-1. Genes Cells 2005; 10(9): 887–895
https://doi.org/10.1111/j.1365-2443.2005.00886.x
|
24 |
LA Torre, B Trabert, CE DeSantis, KD Miller, G Samimi, CD Runowicz, MM Gaudet, A Jemal, RL Siegel. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284–296
https://doi.org/10.3322/caac.21456
|
25 |
RL Siegel, KD Miller, HE Fuchs, A Jemal. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7–33
https://doi.org/10.3322/caac.21708
|
26 |
Y Jia, C Tian, H Wang, F Yu, W Lv, Y Duan, Z Cheng, X Wang, Y Wang, T Liu, J Wang, L Liu. Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer 2021; 20(1): 162
https://doi.org/10.1186/s12943-021-01455-y
|
27 |
HT Liu, S Liu, L Liu, RR Ma, P Gao. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res 2018; 78(20): 5877–5890
https://doi.org/10.1158/0008-5472.CAN-18-1011
|
28 |
J Tang, T Yan, Y Bao, C Shen, C Yu, X Zhu, X Tian, F Guo, Q Liang, Q Liu, M Zhong, J Chen, Z Ge, X Li, X Chen, Y Cui, Y Chen, W Zou, H Chen, J Hong, JY Fang. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat Commun 2019; 10(1): 3499
https://doi.org/10.1038/s41467-019-11447-8
|
29 |
S Yamamura, M Imai-Sumida, Y Tanaka, R Dahiya. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 2018; 75(3): 467–484
https://doi.org/10.1007/s00018-017-2626-6
|
30 |
M Wang, C Mao, L Ouyang, Y Liu, W Lai, N Liu, Y Shi, L Chen, D Xiao, F Yu, X Wang, H Zhou, Y Cao, S Liu, Q Yan, Y Tao, B Zhang. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26(11): 2329–2343
https://doi.org/10.1038/s41418-019-0304-y
|
31 |
YP Hu, YP Jin, XS Wu, Y Yang, YS Li, HF Li, SS Xiang, XL Song, L Jiang, YJ Zhang, W Huang, SL Chen, FT Liu, C Chen, Q Zhu, HZ Chen, R Shao, YB Liu. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer 2019; 18(1): 167
https://doi.org/10.1186/s12943-019-1097-9
|
32 |
A Luo, X Zhou, X Shi, Y Zhao, Y Men, X Chang, H Chen, F Ding, Y Li, D Su, Z Xiao, Z Hui, Z Liu. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene 2019; 38(25): 4990–5006
https://doi.org/10.1038/s41388-019-0771-0
|
33 |
E Vescarelli, G Gerini, F Megiorni, E Anastasiadou, P Pontecorvi, L Solito, C De Vitis, S Camero, C Marchetti, R Mancini, P Benedetti Panici, C Dominici, F Romano, A Angeloni, C Marchese, S Ceccarelli. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. J Exp Clin Cancer Res 2020; 39(1): 3
https://doi.org/10.1186/s13046-019-1490-7
|
34 |
ZY Li, Y Xie, M Deng, L Zhu, X Wu, G Li, NX Shi, C Wen, W Huang, Y Duan, Z Yin, XJ Lin. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett 2022; 526: 322–334
https://doi.org/10.1016/j.canlet.2021.11.006
|
35 |
Z Li, J Zhang, H Zheng, C Li, J Xiong, W Wang, H Bao, H Jin, P Liang. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 2019; 38(1): 380
https://doi.org/10.1186/s13046-019-1371-0
|
36 |
H Liu, J Li, H Zhao, X Liu, X Ye. DNAJC2 is reversely regulated by miR-627-3p, promoting the proliferation of colorectal cancer. Mol Med Rep 2021; 24(2): 589
https://doi.org/10.3892/mmr.2021.12228
|
37 |
L Meng, Y Zheng, S Liu, Y Ju, S Ren, Y Sang, Y Zhu, L Gu, F Liu, Y Zhao, X Zhang, M Sang. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett 2021; 519: 117–129
https://doi.org/10.1016/j.canlet.2021.06.026
|
38 |
D Li, L Wang, J Feng, YW Shen, LN Liu, Y Wang. RP11-284F21.9 promotes lung carcinoma proliferation and invasion via the regulation of miR-627-3p/CCAR1. Oncol Rep 2020; 44(4): 1638–1648
https://doi.org/10.3892/or.2020.7732
|
39 |
E Pasmant, B Gilbert-Dussardier, A Petit, B de Laval, A Luscan, A Gruber, H Lapillonne, C Deswarte, P Goussard, I Laurendeau, B Uzan, F Pflumio, F Brizard, P Vabres, I Naguibvena, S Fasola, F Millot, F Porteu, D Vidaud, J Landman-Parker, P Ballerini. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 2015; 34(5): 631–638
https://doi.org/10.1038/onc.2013.587
|
40 |
J Ablain, M Xu, H Rothschild, RC Jordan, JK Mito, BH Daniels, CF Bell, NM Joseph, H Wu, BC Bastian, LI Zon, I Yeh. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science 2018; 362(6418): 1055–1060
https://doi.org/10.1126/science.aau6509
|
41 |
H Brems, E Legius. Legius syndrome, an Update. Molecular pathology of mutations in SPRED1. Keio J Med 2013; 62(4): 107–112
https://doi.org/10.2302/kjm.2013-0002-RE
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|