Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (4) : 618-626    https://doi.org/10.1007/s11684-021-0867-0
RESEARCH ARTICLE
Four-protein model for predicting prognostic risk of lung cancer
Xiang Wang1, Minghui Wang1, Lin Feng1, Jie Song1, Xin Dong2(), Ting Xiao1(), Shujun Cheng1()
1. State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
2. Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
 Download: PDF(810 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Patients with lung cancer at the same stage may have markedly different overall outcome and a lack of specific biomarker to predict lung cancer outcome. Heat-shock protein 90 β (HSP90β) is overexpressed in various tumor cells. In this study, the ELISA results of HSP90β combined with CEA, CA125, and CYFRA21-1 were used to construct a recursive partitioning decision tree model to establish a four-protein diagnostic model and predict the survival of patients with lung cancer. Survival analysis showed that the recursive partitioning decision tree could distinguish the prognosis between high- and low-risk groups. Results suggested that the joint detection of HSP90β, CEA, CA125, and CYFRA21-1 in the peripheral blood of patients with lung cancer is plausible for early diagnosis and prognosis prediction of lung cancer.

Keywords lung cancer      HSP90β      decision tree model      prognosis     
Corresponding Author(s): Xin Dong,Ting Xiao,Shujun Cheng   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 29 October 2021   Online First Date: 09 March 2022    Issue Date: 02 September 2022
 Cite this article:   
Xiang Wang,Minghui Wang,Lin Feng, et al. Four-protein model for predicting prognostic risk of lung cancer[J]. Front. Med., 2022, 16(4): 618-626.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0867-0
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I4/618
Group Number HSP90β levels (ng/mL) P value
Mean±SD Range Median
Healthy group 282 52.15±50.61 14.22–293.61 30.41 <0.001a
?Age (year) <0.001
??>60 93 71.47±58.19 14.37–293.61 50.17
??≤60 189 42.65±43.55 14.22–277.25 23.17
?Gender 0.394
??Male 182 53.07±50.30 14.37–293.61 32.09
??Female 100 50.82±51.55 14.22–277.25 29.57
Lung cancer 1162 196.65±127.72 15.96–686.28 162.02
?SCLC 80 247.11±123.38 40.71–661.23 221.80 <0.001b
??Age 0.528
???>60 26 227.25±98.73 70.80–505.89 207.00
???≤60 54 256.68±133.44 40.71–661.23 231.15
??Gender 0.158
???Male 58 237.63±126.53 40.71–661.23 214.62
???Female 22 272.10±113.60 134.26–530.86 231.37
?NSCLC
??Age
1082 192.91±127.30 14.93–686.28 157.06 0.973
???>60 553 191.35±124.61 14.93–681.09 158.00
???≤60 529 194.55±130.15 15.54–686.28 155.01
??Gender
???Male 681 195.51±128.19 14.93–686.28 156.99 0.295
???Female 401 188.50±125.81 16.83–681.09 157.37
??Stage 0.130
???I 510 187.81±132.76 15.96–686.28 147.22
???II 204 195.67±118.11 16.66–663.66 169.90
???III–IV 350 196.85±124.20 14.93–673.27 159.59
???NA 18
??Lymph node metastasis 0.118
???Yes 459 197.63±123.92 15.54–673.27 161.57
???No 565 190.54±131.51 15.96–686.28 150.21
???NA 58
??Pathologic types 0.086
???LUSC 371 201.22±130.39 15.54–686.28 157.12
???LUAD 705 188.34±125.66 14.93–681.09 155.91
???NA 6
??Differentiation 0.137
???High 124 171.14±109.59 31.78–498.61 137.50
???Middle 550 196.88±129.22 15.96–681.09 164.41
???Low 378 197.34±130.44 14.93–686.28 156.26
???NA 30
??Smoking history 0.170
???Yes 576 196.41±126.28 15.96–686.28 157.69
???No 499 188.39±127.84 14.93–681.09 155.01
???NA 7
??Family history 0.143
???Yes 166 181.69±127.28 16.66–673.49 133.43
???No 904 194.63±126.87 14.93–686.28 160.56
???NA 12
Tab.1  Correlation between HSP90β protein concentration and clinical information of 1162 patients with lung cancer
Fig.1  (A) Plasma protein concentration of HSP90β in patients with lung cancer (NSCLC, non-small-cell lung cancer; SCLC, small-cell lung cancer). (B) Representative images of IHC for three types of lung cancer. (C) Expression of HSP90β in three types of lung cancer tumor and normal tissues.
Pathologic type Number
(N = 279)
?????H-score P value
Negative
(0)
Low
(1–50)
Medium
(51–150)
High
(151–300)
LUAD 142 <0.001
?Tumor 0 3 22 117
?Normal 137 0 3 2
LUSC 110
?Tumor 0 1 12 97 <0.001
?Normal 106 0 2 2
SCLC 27
?Tumor 1 1 10 15 <0.001
?Normal 24 0 3 0
Tab.2  Statistical result of HSP90β expression in tissues of three lung cancer types
Fig.2  Recursive partitioning decision tree model constructed using 150 patients with lung cancer. CA125, U/mL; CYFRA21-1, CEA, HSP90β, ng/mL.
Fig.3  (A) Overall survival analysis of all patients (log-rank test) based on high or low risk. (B) Forest plot illustrating the hazard ratio (95% CI) for overall survival calculated using univariate and multivariable Cox proportional hazard regression models. CI, confidence interval.
1 RL Siegel, KD Miller, A Jemal. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5–29
https://doi.org/10.3322/caac.21254 pmid: 25559415
2 CK Park, SH Lee, JH Han, CY Kim, DW Kim, SH Paek, DG Kim, DS Heo, IH Kim, HW Jung. Recursive partitioning analysis of prognostic factors in WHO grade III glioma patients treated with radiotherapy or radiotherapy plus chemotherapy. BMC Cancer 2009; 9(1): 450
https://doi.org/10.1186/1471-2407-9-450 pmid: 20017960
3 KR Lamborn, SM Chang, MD Prados. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro-oncol 2004; 6(3): 227–235
https://doi.org/10.1215/S1152851703000620 pmid: 15279715
4 Y Liu, D Lin, T Xiao, Y Ma, Z Hu, H Zheng, S Zheng, Y Liu, M Li, L Li, Y Cao, S Guo, N Han, X Di, K Zhang, S Cheng, Y Gao. An immunohistochemical analysis-based decision tree model for estimating the risk of lymphatic metastasis in pN0 squamous cell carcinomas of the lung. Histopathology 2011; 59(5): 882–891
https://doi.org/10.1111/j.1365-2559.2011.04013.x pmid: 22092400
5 M Taipale, DF Jarosz, S Lindquist. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010; 11(7): 515–528
https://doi.org/10.1038/nrm2918 pmid: 20531426
6 D Mahalingam, R Swords, JS Carew, ST Nawrocki, K Bhalla, FJ Giles. Targeting HSP90 for cancer therapy. Br J Cancer 2009; 100(10): 1523–1529
https://doi.org/10.1038/sj.bjc.6605066 pmid: 19401686
7 J Trepel, M Mollapour, G Giaccone, L Neckers. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010; 10(8): 537–549
https://doi.org/10.1038/nrc2887 pmid: 20651736
8 WB Pratt, DO Toft. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228(2): 111–133
https://doi.org/10.1177/153537020322800201 pmid: 12563018
9 HM Beere. Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001; 2001(93): re1
pmid: 11752668
10 L Whitesell, EG Mimnaugh, B De Costa, CE Myers, LM Neckers. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91(18): 8324–8328
https://doi.org/10.1073/pnas.91.18.8324 pmid: 8078881
11 A Kamal, MF Boehm, FJ Burrows. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 2004; 10(6): 283–290
https://doi.org/10.1016/j.molmed.2004.04.006 pmid: 15177193
12 A Maloney, P Workman. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002; 2(1): 3–24
https://doi.org/10.1517/14712598.2.1.3 pmid: 11772336
13 JS Isaacs, W Xu, L Neckers. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003; 3(3): 213–217
https://doi.org/10.1016/S1535-6108(03)00029-1 pmid: 12676580
14 TM Gress, F Müller-Pillasch, C Weber, MM Lerch, H Friess, M Büchler, HG Beger, G Adler. Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 1994; 54(2): 547–551
pmid: 8275493
15 AM Mileo, M Fanuele, F Battaglia, G Scambia, P Benedetti-Panici, S Mancuso, U Ferrini. Selective over-expression of mRNA coding for 90 kDa stress-protein in human ovarian cancer. Anticancer Res 1990; 10(4): 903–906
pmid: 2382987
16 SE Holt, DL Aisner, J Baur, VM Tesmer, M Dy, M Ouellette, JB Trager, GB Morin, DO Toft, JW Shay, WE Wright, MA White. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999; 13(7): 817–826
https://doi.org/10.1101/gad.13.7.817 pmid: 10197982
17 A Akalin, LW Elmore, HL Forsythe, BA Amaker, ED McCollum, PS Nelson, JL Ware, SE Holt. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res 2001; 61(12): 4791–4796
pmid: 11406554
18 P Csermely, T Schnaider, C Soti, Z Prohászka, G Nardai. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79(2): 129–168
https://doi.org/10.1016/S0163-7258(98)00013-8 pmid: 9749880
19 AS Sreedhar, E Kalmár, P Csermely, YF Shen. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 2004; 562(1–3): 11–15
https://doi.org/10.1016/S0014-5793(04)00229-7 pmid: 15069952
20 M Ogata, Z Naito, S Tanaka, Y Moriyama, G Asano. Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch 2000; 67(3): 177–185
https://doi.org/10.1272/jnms.67.177 pmid: 10851351
21 V Cambiazo, M González, C Isamit, RB Maccioni. The β-isoform of heat shock protein hsp-90 is structurally related with human microtubule-interacting protein Mip-90. FEBS Lett 1999; 457(3): 343–347
https://doi.org/10.1016/S0014-5793(99)01070-4 pmid: 10471805
22 AS Sreedhar, K Mihály, B Pató, T Schnaider, A Steták, K Kis-Petik, J Fidy, T Simonics, A Maraz, P Csermely. Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. J Biol Chem 2003; 278(37): 35231–35240
https://doi.org/10.1074/jbc.M301371200 pmid: 12842893
23 X Liu, L Ye, J Wang, D Fan. Expression of heat shock protein 90 β in human gastric cancer tissue and SGC7901/VCR of MDR-type gastric cancer cell line. Chin Med J (Engl) 1999; 112(12): 1133–1137
pmid: 11721455
24 AS Sreedhar, P Csermely. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101(3): 227–257
https://doi.org/10.1016/j.pharmthera.2003.11.004 pmid: 15031001
25 J Bertram, K Palfner, W Hiddemann, M Kneba. Increase of P-glycoprotein-mediated drug resistance by hsp 90 β. Anticancer Drugs 1996; 7(8): 838–845
https://doi.org/10.1097/00001813-199611000-00004 pmid: 8991187
26 R Molina, X Filella, JM Augé, R Fuentes, I Bover, J Rifa, V Moreno, E Canals, N Viñolas, A Marquez, E Barreiro, J Borras, P Viladiu. Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol 2003; 24(4): 209–218
https://doi.org/10.1159/000074432 pmid: 14654716
27 AK Karam, BY Karlan. Ovarian cancer: the duplicity of CA125 measurement. Nat Rev Clin Oncol 2010; 7(6): 335–339
https://doi.org/10.1038/nrclinonc.2010.44 pmid: 20368726
28 S Cedrés, I Nuñez, M Longo, P Martinez, E Checa, D Torrejón, E Felip. Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer (NSCLC). Clin Lung Cancer 2011; 12(3): 172–179
https://doi.org/10.1016/j.cllc.2011.03.019 pmid: 21663860
29 J-Y Xu, C Zhang, X Wang, L Zhai, Y Ma, Y Mao, K Qian, C Sun, Z Liu, S Jiang, M Wang, L Feng, L Zhao, P Liu, B Wang, X Zhao, H Xie, X Yang, L Zhao, Y Chang, J Jia, X Wang, Y Zhang, Y Wang, Y Yang, Z Wu, L Yang, B Liu, T Zhao, S Ren, A Sun, Y Zhao, W Ying, F Wang, G Wang, Y Zhang, S Cheng, J Qin, X Qian, Y Wang, J Li, F He, T Xiao, M Tan. Integrative proteomic characterization of human lung adenocarcinoma. Cell 2020; 182(1): 245–261.e17
https://doi.org/10.1016/j.cell.2020.05.043
30 X Wang, Y Wang, L Feng, M Wang, K Zhang, Y Mao, T Xiao, S Cheng. Elevated expression of lung development-related protein HSP90β indicates poor prognosis in non-small cell lung cancer through affecting the cell cycle and apoptosis. Signal Transduct Target Ther 2021; 6(1): 82
https://doi.org/10.1038/s41392-021-00465-y pmid: 33633110
31 TM Therneau, EJ Atkinson. An introduction to recursive partitioning using the RPART routines. Mayo Foundation: Technical report 1997; 61: 452
32 SH Millson, AW Truman, A Rácz, B Hu, B Panaretou, J Nuttall, M Mollapour, C Söti, PW Piper. Expressed as the sole Hsp90 of yeast, the α and β isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90β generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 2007; 274(17): 4453–4463
https://doi.org/10.1111/j.1742-4658.2007.05974.x pmid: 17681020
33 MI Gallegos Ruiz, K Floor, P Roepman, JA Rodriguez, GA Meijer, WJ Mooi, E Jassem, J Niklinski, T Muley, N van Zandwijk, EF Smit, K Beebe, L Neckers, B Ylstra, G Giaccone. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One 2008; 3(3): e0001722
https://doi.org/10.1371/journal.pone.0001722 pmid: 18320023
34 Q Cheng, JT Chang, J Geradts, LM Neckers, T Haystead, NL Spector, HK Lyerly. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res 2012; 14(2): R62
https://doi.org/10.1186/bcr3168 pmid: 22510516
35 G Wang, X Gu, L Chen, Y Wang, B Cao, Q E. Comparison of the expression of 5 heat shock proteins in benign and malignant salivary gland tumor tissues. Oncol Lett 2013; 5(4): 1363–1369
https://doi.org/10.3892/ol.2013.1166 pmid: 23599795
36 BK Eustace, T Sakurai, JK Stewart, D Yimlamai, C Unger, C Zehetmeier, B Lain, C Torella, SW Henning, G Beste, BT Scroggins, L Neckers, LL Ilag, DG Jay. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol 2004; 6(6): 507–514
https://doi.org/10.1038/ncb1131 pmid: 15146192
37 K Sidera, M Samiotaki, E Yfanti, G Panayotou, E Patsavoudi. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 2004; 279(44): 45379–45388
https://doi.org/10.1074/jbc.M405486200 pmid: 15302889
38 S Tsutsumi, B Scroggins, F Koga, MJ Lee, J Trepel, S Felts, C Carreras, L Neckers. A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 2008; 27(17): 2478–2487
https://doi.org/10.1038/sj.onc.1210897 pmid: 17968312
39 M Grunnet, JB Sorensen. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 2012; 76(2): 138–143
https://doi.org/10.1016/j.lungcan.2011.11.012 pmid: 22153832
40 S Ando, H Kimura, N Iwai, N Yamamoto, T Iida. Positive reactions for both Cyfra21-1 and CA125 indicate worst prognosis in non-small cell lung cancer. Anticancer Res 2003; 23(3C): 2869–2874
pmid: 12926125
41 L Hui, G Liping. Statistical estimation of diagnosis with genetic markers based on decision tree analysis of complex disease. Comput Biol Med 2009; 39(11): 989–992
https://doi.org/10.1016/j.compbiomed.2009.07.015 pmid: 19712931
42 D Al-Dlaeen, A Alashqur. Using decision tree classification to assist in the prediction of Alzheimer’s disease. International Conference on Computer Science and Information Technology 2014: 122–126
43 S Mai, T Turner, R Stocker. Using decision tree for diagnosing heart disease patients. Australasian Data Mining Conference 2011: 23–30
[1] FMD-21021-OF-XT_suppl_1 Download
[1] Yaru Tian, Hairong Tian, Xiaoyang Zhai, Hui Zhu, Jinming Yu. Bevacizumab in combination with pemetrexed and platinum for elderly patients with advanced non-squamous non-small-cell lung cancer: a retrospective analysis[J]. Front. Med., 2022, 16(4): 610-617.
[2] Wenjing Zhou, Jing Zhang, Mingkun Yan, Jin Wu, Shuo Lian, Kang Sun, Baiqing Li, Jia Ma, Jun Xia, Chaoqun Lian. Orlistat induces ferroptosis-like cell death of lung cancer cells[J]. Front. Med., 2021, 15(6): 922-932.
[3] Jiayi Wu, Weiqi Gao, Xiaosong Chen, Chunxiao Fei, Lin Lin, Weiguo Chen, Ou Huang, Siji Zhu, Jianrong He, Yafen Li, Li Zhu, Kunwei Shen. Prognostic value of the 21-gene recurrence score in ER-positive, HER2-negative, node-positive breast cancer was similar in node-negative diseases: a single-center study of 800 patients[J]. Front. Med., 2021, 15(4): 621-628.
[4] Xueping Li, Yuting Dai, Bing Chen, Jinyan Huang, Saijuan Chen, Lu Jiang. Clinical significance of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression in t(8;21) acute myeloid leukemia[J]. Front. Med., 2021, 15(4): 608-620.
[5] Na Qin, Yuancheng Li, Cheng Wang, Meng Zhu, Juncheng Dai, Tongtong Hong, Demetrius Albanes, Stephen Lam, Adonina Tardon, Chu Chen, Gary Goodman, Stig E. Bojesen, Maria Teresa Landi, Mattias Johansson, Angela Risch, H-Erich Wichmann, Heike Bickeboller, Gadi Rennert, Susanne Arnold, Paul Brennan, John K. Field, Sanjay Shete, Loic Le Marchand, Olle Melander, Hans Brunnstrom, Geoffrey Liu, Rayjean J. Hung, Angeline Andrew, Lambertus A. Kiemeney, Shan Zienolddiny, Kjell Grankvist, Mikael Johansson, Neil Caporaso, Penella Woll, Philip Lazarus, Matthew B. Schabath, Melinda C. Aldrich, Victoria L. Stevens, Guangfu Jin, David C. Christiani, Zhibin Hu, Christopher I. Amos, Hongxia Ma, Hongbing Shen. Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma[J]. Front. Med., 2021, 15(2): 275-291.
[6] Yanfei Zhang, Xinchun Zhao, Yongchun Zhou, Min Wang, Guangbiao Zhou. Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer[J]. Front. Med., 2020, 14(3): 318-326.
[7] Huanping Wang, Haitao Meng, Jinghan Wang, Yinjun Lou, Yile Zhou, Peipei Lin, Fenglin Li, Lin Liu, Huan Xu, Min Yang, Jie Jin. Clinical characteristics and prognostic values of 1p32.3 deletion detected through fluorescence in situ hybridization in patients with newly diagnosed multiple myeloma: a single-center study in China[J]. Front. Med., 2020, 14(3): 327-334.
[8] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[9] Yue Wang, Jinxia Zhang, Yunfan Wang, Shufang Wang, Yu Zhang, Qi Miao, Fei Gao, Huiying He. Expression status of GATA3 and mismatch repair proteins in upper tract urothelial carcinoma[J]. Front. Med., 2019, 13(6): 730-740.
[10] Wenjing Wang, Shigang Ding, Hejun Zhang, Jun Li, Jun Zhan, Hongquan Zhang. G protein-coupled receptor LGR6 is an independent risk factor for colon adenocarcinoma[J]. Front. Med., 2019, 13(4): 482-491.
[11] Weiqi Rong, Yang Zhang, Lei Yang, Lin Feng, Baojun Wei, Fan Wu, Liming Wang, Yanning Gao, Shujun Cheng, Jianxiong Wu, Ting Xiao. Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma[J]. Front. Med., 2019, 13(2): 250-258.
[12] Yiwen Cao, Zhenhua Liu, Wen Wu, Ying Qian, Qin Shi, Rong Shen, Binshen Ouyang, Pengpeng Xu, Shu Cheng, Jin Ye, Yiming Lu, Chaofu Wang, Chengde Yang, Li Wang, Weili Zhao. Presence of multiple abnormal immunologic markers is an independent prognostic factor of diffuse large B-cell lymphoma[J]. Front. Med., 2019, 13(1): 94-103.
[13] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[14] Jing Yue, Bo Zhang, Mingyue Wang, Junning Yao, Yifan Zhou, Ding Ma, Lei Jin. Effect of antitubercular treatment on the pregnancy outcomes and prognoses of patients with genital tuberculosis[J]. Front. Med., 2019, 13(1): 121-125.
[15] Bin Yang, Yan Yu, Jing Chen, Yan Zhang, Ye Yin, Nan Yu, Ge Chen, Shifei Zhu, Haiyan Huang, Yongqun Yuan, Jihui Ai, Xinyu Wang, Kezhen Li. Possibility of women treated with fertility-sparing surgery for non-epithelial ovarian tumors to safely and successfully become pregnant---a Chinese retrospective cohort study among 148 cases[J]. Front. Med., 2018, 12(5): 509-517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed