Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2010, Vol. 5 Issue (2) : 204-211    https://doi.org/10.1007/s11465-010-0005-1
Research articles
IPMC gripper static analysis based on finite element analysis
Hanmin PENG,Yao HUI,Qingjun DING,Huafeng LI,Chunsheng ZHAO,
Precision Driving Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
 Download: PDF(478 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, a type of flexible grippers with low power supply (0–5 V) has been designed and developed for grasping small but precision parts. In previous work, the authors manufactured a soft gripper whose actuating components are made of ionic polymer-metal composite (IPMC) materials; however, there is not a comprehensive model to analyze the complete mechanics for this IPMC gripper. Therefore, this paper provides a finite element method for analyzing its static mechanics characteristics in the state with maximal stress and strain (i.e., the gripper opening largest, including the IPMC deformation, stress, and strain). Further, these electromechanical coupling relationships can be simulated by using the piezoelectric analysis module based on ANSYS software. The simulation results show that the maximal tip displacement of IPMC strips can nearly reach their own free length, the maximal stress is 54 MPa in the center of copper electrodes, and the maximal strain is 0.0286 on the IPMC strip. The results provide detailed numerical solutions and appropriate finite element analysis methodologies beneficial for further research on the optimization design, forecast analysis, and control field.
Keywords ionic polymer-metal composite (IPMC)      artificial muscles      actuator      flexible gripper      finite element analysis      electromechanical coupling      
Issue Date: 05 June 2010
 Cite this article:   
Hanmin PENG,Yao HUI,Qingjun DING, et al. IPMC gripper static analysis based on finite element analysis[J]. Front. Mech. Eng., 2010, 5(2): 204-211.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0005-1
https://academic.hep.com.cn/fme/EN/Y2010/V5/I2/204
Shahinpoor M, Kim K J. Ionic polymer-metalcomposites: I. Fundamentals. Smart Materialsand Structures, 2001, 10: 819―833

doi: 10.1088/0964-1726/10/4/327
Kim K J, Shahinpoor M. Ionicpolymer-metal composites: II. Manufacturing techniques. Smart Materials and Structures, 2003, 12: 65―79

doi: 10.1088/0964-1726/12/1/308
Mojarrad M, Shahinpoor M. Biomimeticrobotic propulsion using polymeric artificial muscles.In: 1997 IEEE International Conference on Roboticsand Automation, New Mexico(USA): Albuquerque. 1997, 2152―2157
Bar-Cohen Y. Electroactive Polymer (EAP) Actuators as Artificial MusclesReality, Potential, and Challenges. Bellingham: SPIE Press, 2004
Peng H M, Ding Q J, Li H F. Fabrication of ionic polymer-metal composites(IPMCs) and robot design. Frontiers ofMechanical Engineering in China, 2009, 4(3): 332―338
Lumia R, Shahinpoor M. Microgripperdesign using electro-active polymers. In: Proceedings of SPIE―The International Society for OpticalEngineering. 1999, 3669: 322―329
Dcole U, Lumia R, Shahinpoor M. Grasping flexible objectsusing artificial muscle microgrippers. Robotics: Trends, Principles,and Applications―International Symposium on Robotics and Applications,ISORA. In: Sixth Biannual World AutomationCongress. 2004: 191―196
Lee S, Park H C, Kim K J. Equivalent modeling for ionic polymer-metalcomposite actuators based on beam theories. Smart Materials and Structures, 2005, 14: 1363―1368

doi: 10.1088/0964-1726/14/6/028
Lee S, Kim K J. Muscle-likelinear actuator using an ionic polymer-metal composite and its actuationcharacteristics. In: Proceedings of SPIE―TheInternational Society for Optical Engineering. CA(US): San Diego, 2006, 6168: 616820
ANSYS Software. Inc ANSYS 11.0 Documentation. 2007
Nernat-Nasser S, Li J Y. Electromechanicalresponse of ionic polymer-metal composites. Journal of Applied Physics, 2000, 87: 3321―3331

doi: 10.1063/1.372343
Lee S, Kim K J. Design ofIPMC actuator-driven valve-less micropump and its flow rate estimationat low Reynolds numbers. Smart Materialsand Structures, 2006, 15: 1103―1109

doi: 10.1088/0964-1726/15/4/024
Barramba J, Silva J, Costa Branco P J. Evaluation of dielectricgel coating for encapsulation of ionic polymer-metal composite (IPMC)actuators. Sensors and Actuators A: Physical, 2007, 140(2): 232―238

doi: 10.1016/j.sna.2007.06.035
[1] Zhinan ZHANG, Mingdong ZHOU, Weimin DING, Huifang MA. New analysis model for rotor-bearing systems based on plate theory[J]. Front. Mech. Eng., 2019, 14(4): 461-473.
[2] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[3] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[4] Lei XU,Huajun CAO,Hailong LIU,Yubo ZHANG. Assessment of fatigue life of remanufactured impeller based on FEA[J]. Front. Mech. Eng., 2016, 11(3): 219-226.
[5] Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Front. Mech. Eng., 2015, 10(1): 37-42.
[6] Ruizhou WANG, Xianmin ZHANG. Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform[J]. Front. Mech. Eng., 2015, 10(1): 20-36.
[7] Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY. A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality under quasi-static loading employing elastic-creep & elastic-plastic-creep deformation[J]. Front Mech Eng, 2013, 8(2): 181-186.
[8] G. BORCHERT, C. L?CHTE, G. CARBONE, A. RAATZ. A modular design kit for task-adaptable low-cost robots based on BaPaMan design[J]. Front Mech Eng, 2013, 8(1): 33-41.
[9] Mahdi RASOULI, Andy Prima KENCANA, Van An HUYNH, Eng Kiat TING, Joshua Chong Yue LAI, Kai Juan WONG, Su Lim TAN, Soo Jay PHEE. Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract[J]. Front Mech Eng, 2011, 6(1): 40-44.
[10] Lin LIN, Mahdi RASOULI, Andy Prima KENCANA, Su Lim TAN, Kai Juan WONG, Khek Yu HO, Soo Jay PHEE. Capsule endoscopy—A mechatronics perspective[J]. Front Mech Eng, 2011, 6(1): 33-39.
[11] Shoujun CHEN, Qiang LI, Qi AN, . Calculation method of radial stress and deformation on conic threaded connections with interference fit[J]. Front. Mech. Eng., 2010, 5(3): 302-307.
[12] Subhash ANURAG, Yuebin GUO, . Predictive model to decouple the contributions of friction and plastic deformation to machined surface temperatures and residual stress patterns in finish dry cutting[J]. Front. Mech. Eng., 2010, 5(3): 247-255.
[13] Xinhua WANG, Shuwen SUN, Jian ZHEN, Qianyi YA, Deguo WANG, . Signal separation technology for diphase opposition giant magnetostrictive self-sensing actuator[J]. Front. Mech. Eng., 2010, 5(2): 176-183.
[14] Dan WU, Zhichun YANG, Hao SUN, . Vibration control efficiency of piezoelectric shunt damping system[J]. Front. Mech. Eng., 2009, 4(4): 441-446.
[15] Qi CHEN, Ke XIONG, Kan BIAN, Ning JIN, Bangfeng WANG, . Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Front. Mech. Eng., 2009, 4(4): 436-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed