Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2010, Vol. 5 Issue (3) : 302-307    https://doi.org/10.1007/s11465-010-0018-9
Research articles
Calculation method of radial stress and deformation on conic threaded connections with interference fit
Shoujun CHEN,Qiang LI,Qi AN,
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
 Download: PDF(391 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper presents a calculation method for radial stress distribution and deformation on conic threaded connections with interference fit. Based on elastic mechanics, a new calculation model is established using the thick-walled-cylindrical theory. A sample calculation for API 88.9 mm conic threaded connection indicates that the method proposed in this paper is reasonable, and the finite element analysis (FEA) method is used to validate the proposed method. The results obtained by the proposed method and FEA method are identical. The model offers a new way of calculating the radial stress and deformation on conic thread connections with interference fit.
Keywords conic threaded connections      interference fit      radial stress      deformation      finite element analysis (FEA)      
Issue Date: 05 September 2010
 Cite this article:   
Shoujun CHEN,Qiang LI,Qi AN. Calculation method of radial stress and deformation on conic threaded connections with interference fit[J]. Front. Mech. Eng., 2010, 5(3): 302-307.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0018-9
https://academic.hep.com.cn/fme/EN/Y2010/V5/I3/302
Andrieux S. Multiple scaling method for the calculation of threadedassemblies. Computer Methods in AppliedMechanics Engineering, 1993, 102(3): 293―317

doi: 10.1016/0045-7825(93)90052-Y
Englund R B, Johnson D H. Finite element analysis of a threaded connection compared to experimentaland theoretical research. Journal of EngineeringTechnology, 1997, 14(2): 42―47
Tsai M Y, Morton J. Stressand failure analysis of a pin-loaded composite joints. J Compos Mater, 1990, 24(10): 1101―1120

doi: 10.1177/002199839002401005
Maduschka L. Beanspruchung von Schraubenverbindungen und Zweckm?βigeGestaltung der Gewindetr?ger (Stresses in threaded connectionsand shape optimisation). Forschung aufdem Gebiete des Ingenieurwesens, 1936, 7(6): 299―305 (in German)

doi: 10.1007/BF02584912
Sopwith D G. The distribution of load in screw threads.In: Proc Inst Mech Engrs Appl Mech, 1949, 159: 373―383
Yazawa S, Hongo K. Distributionof load in the screw thread of a bolt-nut connection subjected totangential forces and bending moments. JSME, JSME International Journal, 1988, 31(2): 174―180
Goodier J N. The distribution of load on the threads of screws. Transactions of the ASME, 1940, 62: A10―A16
Wang W, Marshek K M. Determination of the load distribution in a threaded connector havingdissimilar materials and varying thread stiffness. Journal of Engineering for Industry, ASME, 1995, 117(1): 1―8

doi: 10.1115/1.2803273
Heywood R B. Tensile fillet stresses in loaded projections. In: Proc Inst Mech Engrs, 1948, 384―391
Macdonald K A, Deans W F. Stress analysisof drill string threaded connection using the finite element method. Engineering Failure Analysis, 1995, 2(1): 1―30

doi: 10.1016/1350-6307(95)00007-D
[1] Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU. Damage propagation and strength prediction of a single-lap interference-fit laminate structure[J]. Front. Mech. Eng., 2020, 15(4): 558-570.
[2] B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review[J]. Front. Mech. Eng., 2019, 14(1): 113-127.
[3] Jie SHAO, Tielin SHI, Li DU, Lei SU, Xiangning LU, Guanglan LIAO. Analysis on annealing-induced stress of blind-via TSV using FEM[J]. Front. Mech. Eng., 2018, 13(3): 401-410.
[4] Lei XU,Huajun CAO,Hailong LIU,Yubo ZHANG. Assessment of fatigue life of remanufactured impeller based on FEA[J]. Front. Mech. Eng., 2016, 11(3): 219-226.
[5] M. R. AKBARI,M. NIMAFAR,D. D. GANJI,M. M. AKBARZADE. Scrutiny of non-linear differential equations Euler-Bernoulli beam with large rotational deviation by AGM[J]. Front. Mech. Eng., 2014, 9(4): 402-408.
[6] Zhaoxu QI,Bin LI,Liangshan XIONG. An improved algorithm for McDowell’s analytical model of residual stress[J]. Front. Mech. Eng., 2014, 9(2): 150-155.
[7] Baosheng ZHAO, Di WU, Xi CHEN. Boundary conditions for axisymmetric piezoelectric cylinder[J]. Front Mech Eng, 2013, 8(4): 401-408.
[8] Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY. A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality under quasi-static loading employing elastic-creep & elastic-plastic-creep deformation[J]. Front Mech Eng, 2013, 8(2): 181-186.
[9] Mohammad Javad REZVANIL, Mohammad Hossein KARGARNOVIN, Davood YOUNESIAN. Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory[J]. Front Mech Eng, 2011, 6(4): 409-418.
[10] Baosheng ZHAO, Yang GAO, Yingtao ZHAO, Dechen ZHANG. Refined analysis of axi-symmetric circular cylinder in the axial magnetic field without ad hoc assumption[J]. Front Mech Eng, 2011, 6(3): 318-323.
[11] Pengwan CHEN, Zhongbin ZHOU, Shaopeng MA, Qinwei MA, Fenglei HUANG. Measurement of dynamic fracture toughness and failure behavior for explosive mock materials[J]. Front Mech Eng, 2011, 6(3): 292-295.
[12] Subhash ANURAG, Yuebin GUO, . Predictive model to decouple the contributions of friction and plastic deformation to machined surface temperatures and residual stress patterns in finish dry cutting[J]. Front. Mech. Eng., 2010, 5(3): 247-255.
[13] Ruijun GE, Bangfeng WANG, Changwei MOU, Yong ZHOU, . Deformation characteristics of corrugated composites for morphing wings[J]. Front. Mech. Eng., 2010, 5(1): 73-78.
[14] Weilong YIN, Jingcang LIU, Jinsong LENG, . Deformation analysis of shape memory polymer for morphing wing skin under airflow[J]. Front. Mech. Eng., 2009, 4(4): 447-449.
[15] Qingsheng YANG, Fang XU. Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive law[J]. Front Mech Eng Chin, 2009, 4(3): 284-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed