|
|
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review |
B. J. WANG1, D. K. XU2( ), S. D. WANG2, E. H. HAN2 |
1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China 2. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
|
Keywords
Mg alloys
fatigue behavior
microstructure
crack initiation
deformation mechanism
|
Corresponding Author(s):
D. K. XU
|
Just Accepted Date: 12 December 2017
Online First Date: 29 December 2017
Issue Date: 30 November 2018
|
|
1 |
Mordike B L, Ebert T. Magnesium: Properties—applications— potential. Materials Science and Engineering: A, 2001, 302(1): 37–45
https://doi.org/10.1016/S0921-5093(00)01351-4
|
2 |
Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 2003, 25(3): 245–256
https://doi.org/10.1016/S0142-1123(02)00054-3
|
3 |
Chapetti M, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels Part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science and Engineering: A, 2003, 356(1–2): 236–244
https://doi.org/10.1016/S0921-5093(03)00136-9
|
4 |
Eisenmeier G, Holzwarth B, Höppel H W. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319–321: 578–582
https://doi.org/10.1016/S0921-5093(01)01105-4
|
5 |
Xu D, Liu L, Xu Y, et al. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Materialia, 2008, 56(5): 985–994
https://doi.org/10.1016/j.actamat.2007.10.057
|
6 |
Tokaji K, Kamakura M. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. International Journal of Fatigue, 2004, 26(11): 1217–1224
https://doi.org/10.1016/j.ijfatigue.2004.03.015
|
7 |
Lv F, Yang F, Duan Q, et al. Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation. International Journal of Fatigue, 2011, 33(5): 672–682
https://doi.org/10.1016/j.ijfatigue.2010.10.013
|
8 |
Yang F, Yin S, Li S, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Materials Science and Engineering: A, 2008, 491(1–2): 131–136
https://doi.org/10.1016/j.msea.2008.02.003
|
9 |
Uematsu Y, Kakiuchi T, Tamada K, et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. International Journal of Fatigue, 2016, 84: 1–8
https://doi.org/10.1016/j.ijfatigue.2015.11.010
|
10 |
Yu D, Zhang D, Sun J, et al.High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy. Materials Science and Engineering: A, 2016, 662: 1–8
https://doi.org/10.1016/j.msea.2016.02.079
|
11 |
Wang S, Xu D, Wang B, et al. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Scientific Reports, 2016, 6(1): 23955
https://doi.org/10.1038/srep23955
|
12 |
Xu D, Han E. Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-Y-Zr alloys. Materials Science Forum, 2015, 816: 333–336
https://doi.org/10.4028/www.scientific.net/MSF.816.333
|
13 |
Xu D, Han E. Relationship between fatigue crack initiation and activated {10 1¯2} twins in as-extruded pure magnesium. Scripta Materialia, 2013, 69(9): 702–705
https://doi.org/10.1016/j.scriptamat.2013.08.006
|
14 |
Xu D, Liu L, Xu Y, et al. The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454(1–2): 123–128
https://doi.org/10.1016/j.jallcom.2006.12.043
|
15 |
Xu D, Liu L, Xu Y, et al.The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime. Scripta Materialia, 2007, 56(1): 1–4
https://doi.org/10.1016/j.scriptamat.2006.09.006
|
16 |
Shih T, Liu W, Chen Y. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 2002, 325(1–2): 152–162
https://doi.org/10.1016/S0921-5093(01)01411-3
|
17 |
Zenner H, Renner F. Cyclic material behaviour of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24(12): 1255–1260
https://doi.org/10.1016/S0142-1123(02)00042-7
|
18 |
Wang B, Xu D, Dong J, et al. Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar. Scripta Materialia, 2014, 88: 5–8
https://doi.org/10.1016/j.scriptamat.2014.06.015
|
19 |
Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281–289
https://doi.org/10.1002/adem.200400021
|
20 |
Sajuri Z B, Miyashita Y, Hosokai Y, et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198–209
https://doi.org/10.1016/j.ijmecsci.2005.09.003
|
21 |
Horstemeyer M F, Yang N, Gall K, et al. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52(5): 1327–1336
https://doi.org/10.1016/j.actamat.2003.11.018
|
22 |
Mayer H, Lipowsky H, Papakyriacou M, et al. Application of ultrasound for fatigue testing of lightweight alloys. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 591–599
https://doi.org/10.1046/j.1460-2695.1999.00205.x
|
23 |
Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343–2356
https://doi.org/10.1016/S1359-6454(02)00067-8
|
24 |
Li Z, Fu P, Peng L, et al. Comparison of high cycle fatigue behaviors of Mg-3Nd-0.2Zn-Zr alloy prepared by different casting processes. Materials Science and Engineering: A, 2013, 579: 170–179
https://doi.org/10.1016/j.msea.2013.05.040
|
25 |
Wang S, Xu D, Wang B, et al. Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy. Materials & Design, 2015, 84: 185–193
https://doi.org/10.1016/j.matdes.2015.06.109
|
26 |
Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11(5): 291–298
https://doi.org/10.1016/0142-1123(89)90054-6
|
27 |
Polak J, Man J, Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation. International Journal of Fatigue, 2003, 25(9–11): 1027–1036
https://doi.org/10.1016/S0142-1123(03)00114-2
|
28 |
Mughrabi H. Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Revue de Physique Appliquée (Paris), 1988, 23(4): 367–379
https://doi.org/10.1051/rphysap:01988002304036700
|
29 |
Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metallurgica et Materialia, 1994, 42(10): 3493–3502
https://doi.org/10.1016/0956-7151(94)90481-2
|
30 |
Man J, Obrtlik K, Blochwitz C, et al. Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel. Acta Materialia, 2002, 50(15): 3767–3780
https://doi.org/10.1016/S1359-6454(02)00167-2
|
31 |
Polák J, Man J, Vystavel T, et al. The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Materials Science and Engineering: A, 2009, 517(1–2): 204–211
https://doi.org/10.1016/j.msea.2009.03.070
|
32 |
Yin S, Yang F, Yang X, et al. The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Materials Science and Engineering: A, 2008, 494(1–2): 397–400
https://doi.org/10.1016/j.msea.2008.04.056
|
33 |
Cáceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Materialia, 2003, 51(20): 6211–6218
https://doi.org/10.1016/S1359-6454(03)00444-0
|
34 |
Obara T, Yoshinga H, Morozumi S. {112̄2}<1123>Slip system in magnesium. Acta Metallurgica, 1973, 21(7): 845–853
https://doi.org/10.1016/0001-6160(73)90141-7
|
35 |
Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica, 1982, 30(10): 1909–1919
https://doi.org/10.1016/0001-6160(82)90031-1
|
36 |
Yu Q, Zhang J, Jiang Y. Fatigue damage development in pure polycrystalline magnesium under cyclic tension-compression loading. Materials Science and Engineering: A, 2011, 528(25–26): 7816–7826
https://doi.org/10.1016/j.msea.2011.06.064
|
37 |
Lahaie D, Embury J D, Chadwick M M, et al. A note on the deformation of fine grained magnesium alloys. Scripta Metallurgica et Materialia, 1992, 27(2): 139–142
https://doi.org/10.1016/0956-716X(92)90102-K
|
38 |
Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia, 2004, 52(17): 5093–5103
https://doi.org/10.1016/j.actamat.2004.07.015
|
39 |
Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59(7): 696–698
https://doi.org/10.1016/j.scriptamat.2008.05.027
|
40 |
Li Z, Wang Q, Luo A, et al. High cycle fatigue of cast Mg-3Nd-0.2Zn magnesium alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2013, 44(11): 5202–5215
https://doi.org/10.1007/s11661-013-1843-3
|
41 |
Li Z, Fu P, Peng L, et al. Influence of solution temperature on fatigue behavior of AM-SC1 cast magnesium alloy. Materials Science and Engineering: A, 2013, 565: 250–257
https://doi.org/10.1016/j.msea.2012.12.035
|
42 |
Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457–459
https://doi.org/10.1023/A:1010919017805
|
43 |
Dong J, Liu W C, Song X, et al. Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy. Materials Science and Engineering: A, 2010, 527(21–22): 6053–6063
https://doi.org/10.1016/j.msea.2010.06.030
|
44 |
Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. International Journal of Fatigue, 2016, 93: 372–386
https://doi.org/10.1016/j.ijfatigue.2016.05.033
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|