Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (1) : 47-54    https://doi.org/10.1007/s11465-012-0307-6
RESEARCH ARTICLE
Identification of thermal error in a feed system based on multi-class LS-SVM
Chao JIN, Bo WU(), Youmin HU, Yao CHENG
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(464 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Research of thermal characteristics has been a key issue in the development of high-speed feed system. The thermal positioning error of a ball-screw is one of the most important objects to consider for high-accuracy and high-speed machine tools. The research work undertaken herein ultimately aims at the development of a comprehensive thermal error identification model with high accuracy and robust. Using multi-class least squares support vector machines (LS-SVM), the thermal positioning error of the feed system is identified with the variance and mean square value of the temperatures of supporting bearings and screw-nut as feature vector. A series of experiments were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 to verify the identification capacity of the presented method. The results show that the recommended model can be used to predict the thermal error of a feed system with good accuracy, which is better than the ordinary BP and RBF neural network. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system.

Keywords least squares support vector machine (LS-SVM)      feed system      thermal error      precision machining     
Corresponding Author(s): WU Bo,Email:bowu@mail.hust.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Chao JIN,Bo WU,Youmin HU, et al. Identification of thermal error in a feed system based on multi-class LS-SVM[J]. Front Mech Eng, 2012, 7(1): 47-54.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0307-6
https://academic.hep.com.cn/fme/EN/Y2012/V7/I1/47
Fig.1  High-speed feed system HUST-FS-001
Fig.2  Temperature measuring points and data acquisition system .(a) Screw-nut pair; (b) slide housing (not shown here); (c) right bearing housing; (d) left bearing housing; (e) motor housing
Fig.3  Photographs of the experiment scene. (a) Linear grating; (b) pressure sensor; (c) temperature measuring points of right bearing; (d) temperature measuring points of left bearing
Fig.4  Standard test cycle
Fig.5  Topological structure of LS-SVM
Experiment stepFeed speed(m·min-1)Preload of ballscrew/NmAxial force/NCyclesRuntime/min
12050230012026
285025004016
31050300010027
4155030005011
5135030004012
62550260010020
720502600308
Tab.1  Operations for the experiment
Fig.6  Axial and backhaul thermal errors of point 500 mm
Fig.7  Thermal error training and identification results based on multi-class LS-SVM (: vanriance; : mean square)
Fig.8  Temperature rise of each measuring point
AlgorithmLS-SVMBPRBF
Identification accuracy/%86.6766.6773.33
Tab.2  Comparison between BP, RBF and multi-class LS-SVM
1 Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools—a review: Part II: thermal errors. International Journal of Machine Tools & Manufacture , 2000, 40(9): 1257-1284
2 Jedrzejewski J, Modrzycki W. A new approach to modelling thermal behaviour of a machine tool under service conditions. Annals of the CIRP , 1992, 41(1): 455-458
doi: 10.1016/S0007-8506(07)61243-8
3 Erkorkmaz K, Gorniak J M, Gordon D J. Precision machine tool X-Y stage utilizing a planar air bearing arrangement. Annals of CIRP , 2010, 59(1): 425-428
doi: 10.1016/j.cirp.2010.03.086
4 Qi L, Zhang G. Modeling and simulation of the thermal network in a space gear-bearing system. In: Proceedings of 2010 IEEE International Conference on Information and Automation, Harbin , 2010: 201-205
5 Huang S C. Analysis of a model to forecast thermal deformation of ball-screw feed drive systems. International Journal of Machine Tools & Manufacture , 1995, 45(8): 1099-1104
6 Venugopal R, Barash M, Shaw M. Thermal effects on the accuracy of numerically controlled machine tools. Annals of the CIRP , 1986, 35(1): 255-258
doi: 10.1016/S0007-8506(07)61882-4
7 Veldhuis S C, Elbestawi M A. A strategy for the compensation of errors in five-axis machining. Annals of the CIRP , 1995, 44(1): 373-378
doi: 10.1016/S0007-8506(07)62345-2
8 Kim S K, Cho D W. Real-time estimation of temperature distribution in a ball-screw system. International Journal of Machine Tools & Manufacture , 1997, 37(4): 451-464
doi: 10.1016/S0890-6955(96)00036-3
9 Ekici S. Classification of power system disturbances using support vector machines. Expert Systems with Applications , 2009, 36(6): 9859-9868
doi: 10.1016/j.eswa.2009.02.002
10 Baccarini L M R, Rochae Silva V V, de Menezes B R, Caminhas W M. SVM practical industrial application for mechanical faults diagnostic. Expert Systems with Applications , 2011, 38(6): 6980-6984
doi: 10.1016/j.eswa.2010.12.017
11 Teti R, Jemielniak K, O’Donnell G, Dornfeld D. Advanced monitoring of machining operations. CIRP Annals—Manufacturing Technology , 2010, 59(2): 717-739
doi: 10.1016/j.cirp.2010.05.010
12 Krulewich D A. Temperature integration model and measurement point selection for thermally induced machinetool errors. Mechatronics , 1998, 8(4): 395-412
doi: 10.1016/S0957-4158(97)00059-7
13 Lo C H, Yuan J X, Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. International Journal of Machine Tools & Manufacture , 1999, 39(9): 1383-1396
14 Suykens J A K, Vandewalle J. Least squares support vector machine classifier. Neural Processing Letters , 1999, 9(3): 293-300
doi: 10.1023/A:1018628609742
15 Fletcher R. Practical Methods of Optimization. Chichester and New York: John Wiley and Sons, 1987
[1] Jianmin HU, Zude ZHOU, Quan LIU, Ping LOU, Junwei YAN, Ruiya LI. Key point selection in large-scale FBG temperature sensors for thermal error modeling of heavy-duty CNC machine tools[J]. Front. Mech. Eng., 2019, 14(4): 442-451.
[2] Hui LI, Likai LI, Neil J. NAPLES, Jeffrey W. ROBLEE, Allen Y. YI. Micro-optical fabrication by ultraprecision diamond machining and precision molding[J]. Front. Mech. Eng., 2017, 12(2): 181-192.
[3] Xiaoguang GUO,Qiang LI,Tao LIU,Renke KANG,Zhuji JIN,Dongming GUO. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front. Mech. Eng., 2017, 12(1): 89-98.
[4] Hang GAO,Xu WANG,Dongming GUO,Yuchuan CHEN. Research progress on ultra-precision machining technologies for soft-brittle crystal materials[J]. Front. Mech. Eng., 2017, 12(1): 77-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed