Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 445-452    https://doi.org/10.1007/s11465-012-0338-z
RESEARCH ARTICLE
Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis
Tao FU1,2(), Jibin ZHAO2, Weijun LIU2
1. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China; 2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
 Download: PDF(146 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper investigates optimization problem of the cutting parameters in high-speed milling on NAK80 mold steel. An experiment based on the technology of Taguchi is performed. The objective is to establish a correlation among spindle speed, feed per tooth and depth of cut to the three directions of cutting force in the milling process. In this study, the optimum cutting parameters are obtained by the grey relational analysis. Moreover, the principal component analysis is applied to evaluate the weights so that their relative significance can be described properly and objectively. The results of experiments show that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of cutting parameters and the proposed approach can be a useful tool to reduce the cutting force.

Keywords high-speed milling      grey relational analysis      principal component analysis      parameters optimization     
Corresponding Author(s): FU Tao,Email:futao@sia.cn   
Issue Date: 05 December 2012
 Cite this article:   
Tao FU,Jibin ZHAO,Weijun LIU. Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis[J]. Front Mech Eng, 2012, 7(4): 445-452.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0338-z
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/445
ElementC/%Si/%Ni/%Mn/%Mo/%Cu/%Al/%Cr/%
Content0.150.33.01.50.31.01.00.3
Tab.1  Chemical composition of NAK80
MaterialTemperature/°CTensile strength/MPaElongation/%Contraction of Area/%Yield /MPaModulus of Elasticity/GPa
NAK8025131914.651.21186199
Tab.2  Physical and Mechanical properties of NAK80
Fig.1  Milling experiment
Levels of experimental factorsExperimental factors
Spindle speed n/(r?min-1)Feed per tooth fz/(mm?z-1)Depth of cut d/mm
120000.100.20
224000.140.35
328000.180.50
Tab.3  Machining parameters and their levels
No.Machining parameters and their levelsExperimental results for response variables
n/(r?min-1)fz/(mm?z-1)d/mmFeed force/NRadial force/NTangential force/N
120000.100.20114.6029.89174.30
220000.100.35157.5053.19241.30
320000.100.50196.6070.97272.90
420000.140.20116.2049.76204.20
520000.140.35175.7072.97264.10
620000.140.50233.40104.90305.90
720000.180.20121.3064.89205.40
820000.180.35207.1094.15304.80
920000.180.50288.10113.90353.30
1024000.100.2098.4136.88181.90
1124000.100.35165.6056.58242.60
1224000.100.50246.4071.31303.00
1324000.140.2090.3339.12154.30
1424000.140.35176.6060.71251.60
1524000.140.50245.3080.66295.60
1624000.180.20106.0066.20157.50
1724000.180.35225.9099.70278.40
1824000.180.50325.30127.30405.90
1928000.100.2094.6547.65170.90
2028000.100.35173.4062.68281.10
2128000.100.50260.6075.82365.40
2228000.140.20101.3058.70175.10
2328000.140.35214.8078.92320.20
2428000.140.50311.20106.80420.40
2528000.180.20121.6071.81198.70
2628000.180.35232.5097.13337.80
2728000.180.50329.60121.30444.40
Tab.4  Experimental layout using an L27 orthogonal array
Fig.2  Purpose of grey relational analysis
Experimental run (comparability sequences)Deviation sequence Δoi(k)=|xo*(k)-xi*(k)|
Feed forceRadial forceTangential force
Δ1(k)Δ2(k)Δ3(k)
10.10140.00000.0689
20.28070.23920.2999
30.44410.42170.4088
40.10810.20400.1720
50.35680.44230.3785
60.59790.77000.5226
70.12940.35930.1761
80.48800.65970.5188
90.82660.86240.6860
100.03380.07180.0951
110.31460.27400.3044
120.65230.42520.5126
130.00000.09480.0000
140.36060.31640.3354
150.64770.52120.4871
160.06550.37280.0110
170.56660.71670.4278
180.98201.00000.8673
190.01810.18230.0572
200.34720.33660.4371
210.71160.47150.7277
220.04580.29580.0717
230.52020.50330.5719
240.92310.78950.9173
250.13070.43030.1531
260.59420.69030.6325
271.00000.93841.0000
Tab.5  Data for 27 comparability sequences
No.Grey relational coefficient γ(xo*(k),xi*(k))Weighted grey relational gradeOrder
Cutting forceFeed forceRadial force
10.83131.00000.87880.90122
20.64040.67640.62510.646710
30.52960.54250.55020.540715
40.82220.71020.74400.76007
50.58360.53060.56920.561814
60.45540.39370.48900.447121
70.79440.58190.73950.70808
80.50610.43120.49080.477018
90.37690.36700.42160.388924
100.93670.87450.84010.88413
110.61380.64600.62160.626711
120.43390.54040.49380.488216
131.00000.84071.00000.94931
140.58100.61240.59850.597012
150.43570.48960.50650.476919
160.88420.57290.97840.81715
170.46880.41100.53890.474220
180.33740.33330.36570.345726
190.96510.73280.89730.86814
200.59020.59760.53360.573313
210.41270.51470.40730.443322
220.91600.62830.87460.81036
230.49010.49830.46650.484717
240.35130.38770.35280.363425
250.79280.53740.76560.70229
260.45700.42010.44150.440023
270.33330.34760.33330.337927
Tab.6  Calculated grey relational coefficient and weighted grey relational grade and its order for 27 comparability sequences
Principal componentEigenvalueExplained variation/%
First2.732291.07
Second0.24418.14
Third0.02370.79
Tab.7  Eigenvalues and explained variation for principal components
Response variableEigenvector
First principal componentSecond principal componentThird principal component
Feed force0.59160.35850.7221
Radial force0.5513-0.8334-0.0379
Tangential force0.58830.42050.6907
Tab.8  Eigenvectors for principal components
Response variableContribution
Feed force0.3417
Radial force0.3185
Tangential force0.3398
Tab.9  Contribution of each individual response variable for the first principal component
Levelsnfzd
10.60350.6636*0.8222*
20.6288*0.60560.5424
30.55810.52120.4258
Max-Min0.07070.14240.3964
Order321
Tab.10  Response table for the grey relational grade
Fig.3  Grey relational grade graph
1 Deng J L. Introduction to grey system theory. Journal of Grey System , 1989, 1(1): 1-24
2 Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology , 1933, 24(6): 417-441
doi: 10.1037/h0071325
3 Taylor F W. On the art of cutting metals. Transactions of ASME , 1907, 28: 31-350
4 Benardos P G, Vosniakos G C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robotics and Computer-integrated Manufacturing , 2002, 18(5,6): 343-354
doi: 10.1016/S0736-5845(02)00005-4
5 Cus F, Balic J. Optimization of cutting process by GA approach. Robotics and Computer-Integrated Manufacturing , 2003, 19(1,2): 113-121
doi: 10.1016/S0736-5845(02)00068-6
6 Pan L K, Wang C C, Wei S L, Sher H F. Optimizing multiple quality characteristics via Taguchi method-based Grey analysis. Journal of Materials Processing Technology , 2007, 182(1-3): 107-116
doi: 10.1016/j.jmatprotec.2006.07.015
7 Wang M Y, Lan T S. Parametric optimization on multi-objective precision turning using grey relational analysis. Information Technology Journal , 2008, 7(7): 1072-1076
doi: 10.3923/itj.2008.1072.1076
8 Tosun N, Ozler L. Optimisation for hot turning operations with multiple performance characteristics. International Journal of Advanced Manufacturing Technology , 2004, 23(11,12): 777-782
doi: 10.1007/s00170-003-1672-4
9 Wang C, Chen S F, Yuen M. Fuzzy part family formation based on grey relational analysis. International Journal of Advanced Manufacturing Technology , 2001, 18(2): 128-132
doi: 10.1007/s001700170083
10 Fung C P. Manufacturing process optimization for wear property of fiber-reinforced polybutylene terephthalate composites with grey relational analysis. Wear , 2003, 254(3,4): 298-306
doi: 10.1016/S0043-1648(03)00013-9
11 Lo S P. The application of an ANFIS and grey system method in turning tool-failure detection. International Journal of Advanced Manufacturing Technology , 2002, 19(8): 564-572
doi: 10.1007/s001700200061
12 Ho C Y, Lin Z C. Analysis and application of grey relation and ANOVA in chemical-mechanical polishing process parameters. International Journal of Advanced Manufacturing Technology , 2003, 21(1): 10-14
doi: 10.1007/s001700300001
13 Tosun N, Pihtili H. The effect of cutting parameters on wire crater sizes in wire EDM. International Journal of Advanced Manufacturing Technology , 2003, 21(10,11): 857-865
doi: 10.1007/s00170-002-1404-1
14 Fung C P, Kang P C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. Journal of Materials Processing Technology , 2005, 170(3): 602-610
doi: 10.1016/j.jmatprotec.2005.06.040
15 Liao H C. Multi-response optimization using weighted principal component. International Journal of Advanced Manufacturing Technology , 2006, 27(7,8): 720-725
doi: 10.1007/s00170-004-2248-7
[1] Kamal JANGRA, Sandeep GROVER, Aman AGGARWAL. Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method[J]. Front Mech Eng, 2012, 7(3): 288-299.
[2] Rajesh SIRIYALA, Gopala Krishna ALLURU, Rama Murthy Raju PENMETSA, Muthukannan DURAISELVAM. Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs[J]. Front Mech Eng, 2012, 7(3): 279-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed