Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (3) : 279-287    https://doi.org/10.1007/s11465-012-0329-0
RESEARCH ARTICLE
Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs
Rajesh SIRIYALA1(), Gopala Krishna ALLURU2, Rama Murthy Raju PENMETSA1, Muthukannan DURAISELVAM3
1. Department of Mechanical Engineering, S.R.K.R. Engineering College, Bhimavaram 534204, India; 2. Department of Mechanical Engineering, University College of Engineering, JNTUK, Kakinada 533003, India; 3. Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, India
 Download: PDF(290 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Through a pin-on-disc type wear setup, the dry sliding wear behavior of SiC-reinforced aluminum composites produced using the molten metal mixing method was investigated in this paper. Dry sliding wear tests were carried on SiC-reinforced metal matrix composites (MMCs) and its matrix alloy sliding against a steel counter face. Different contact stresses, reinforcement percentages, sliding distances, and sliding velocities were selected as the control variables, and the responses were selected as the wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Initially, the optimization of the dry sliding performance of the SiC-reinforced MMCs was performed using grey relational analysis (GRA). Based on the GRA, the optimum level parameters for overall grey relational grade in terms of WVL and COF were identified. Analysis of variance was performed to determine the effect of individual factors on the overall grey relational grade. The results indicated that the sliding velocity was the most effective factor among the control parameters on dry sliding wear, followed by the reinforcement percentage, sliding distance, and contact stress. Finally, the wear surface morphology and wear mechanism of the composites were investigated through scanning electron microscopy.

Keywords aluminum      ANOVA (analysis of variance)      grey relational analysis      metal matrix composites      SiC particulates      Taguchi     
Corresponding Author(s): SIRIYALA Rajesh,Email:rajeshsiri.mech@gmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Muthukannan DURAISELVAM,Rajesh SIRIYALA,Gopala Krishna ALLURU, et al. Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs[J]. Front Mech Eng, 2012, 7(3): 279-287.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0329-0
https://academic.hep.com.cn/fme/EN/Y2012/V7/I3/279
ElementSiMgFeCuZnCrNiTiMn
Content0.1100.0160.3380.1330.0310.0120.0260.0150.004
Tab.1  Chemical composition of aluminum matrix alloy (weight percentage)
FactorsUnitssymbolLevel 1Level 2Level 3Level 4Level 5
Contact StressMPaCS0.40.711.31.6
Reinforcement percentage%RP01.252.53.755
Sliding distancemSD300675105014251800
Sliding velocitym/sSV0.50.8751.251.6252
Tab.2  Designed experimental factors and their levels
Fig.1  Experimental set up used for conducting dry sliding wear
S.No.CSRPSDSVWVLCOF
1111112.0150.6282
2212221.3770.5916
3313338.7860.5523
4414445.3940.5190
5515557.4020.4845
6223137.3650.5329
7324249.3730.5027
8425361.3810.4767
9521418.0390.5664
10122510.6240.5490
11335165.360.4936
12431219.5890.5527
13532334.0270.5250
14133418.4950.5185
15234527.8030.5009
16442132.6060.5399
17543244.6140.5188
18144334.4820.4983
19245441.0910.4675
20341510.9510.5425
21554160.6020.4817
22155247.770.4792
23251310.6720.5473
24352411.0360.5248
25453523.0450.5069
Tab.3  Experimental plan and results for WVL and COF of MMCs
S.No.Normalized WVLNormalized COFGrey Coefficient of WVLGrey Coefficient of COFOver all grey relational grade
10.974600.95160.33330.6425
20.80350.22820.71790.39310.5555
30.48550.47250.49290.48660.4897
40.36480.67980.44040.60960.5250
50.14540.89460.36910.82590.5975
60.51150.59340.50580.55150.5286
70.29210.78130.41390.69570.5548
80.07270.94260.35030.89710.6237
90.86450.3850.78680.44840.6176
1010.49331.00000.49670.7483
1100.83780.33330.75500.5442
120.83620.46980.75330.48540.6193
130.57240.64250.53900.58310.5611
140.85620.68270.77660.61180.6942
150.68610.79250.61440.70670.6605
160.59840.54950.55460.52600.5403
170.3790.6810.44600.61050.5283
180.56410.80860.53430.72320.6287
190.443410.47321.00000.7367
200.9940.53340.98820.51730.7527
210.08690.91210.35380.85050.6022
220.32140.92750.42420.87340.6488
230.99910.50340.99820.50170.7500
240.99250.64370.98520.58390.7845
250.77310.75480.68780.67100.6794
Tab.4  Normalized, grey coefficients and overall grey relational grade values of WVL and COF
LevelCSRPSDSV
10.6725#0.56210.6764#0.5716
20.64630.61460.6380.5813
30.62520.61590.58410.6106
40.59750.63730.59430.6716
50.58130.6930#0.63020.6877#
Delta0.09120.13090.09240.1162
Tab.5  Response table for means of overall grey relational grade (Average grey relational grade: 0.6246; optimal values)
Fig.2  Effect of grey relational grade on different control variables
PredictorSequential Sum of SquaresDOFVarianceCalculated F-valueContribution/%
CS0.02687840.00671753.217315.7318
RP0.04460940.011155.340526.1124
SD0.02726240.0068153.264215.9601
SV0.05535240.01383756.627532.4063
Error0.01670380.00208789.7792
Total0.17080024100.000
Tab.6  Results of ANOVA for grey relational grade
Initial testing parametersOptimal testing parameters
PredictionExperiment
Combination of testing parametersCS1RP1SD1SV1CS1RP5SD1SV5CS1RP5SD1SV5
WVL12.01511.022
COF0.62820.5943
Grey relational grade0.64250.85580.6868
Tab.7  Results of the confirmation experiments
Fig.3  SEM image at 1.6 CS, 1800 SD, 2 SV and zero RP
Fig.4  SEM image at 1.6 CS , 1425 SD, 0.5 SV and 5 RP
1 Cantor B, Dunne F, Stone I. Metal and Ceramic Matrix Composites. Cornwall: IOP Publishing Ltd., , 2003
2 Surappa M K. Aluminum matrix composites: Challenges & opportunities. Sadhana , 2005, 28(1,2): 319-334
3 Hosking F M, Portillo F F, Wunderlin R, Mehrabian R. Composites of aluminum alloys: fabrication and wear behavior. Journal of Materials Science , 1982, 17(2): 477-498
doi: 10.1007/BF00591483
4 Hutchings I M. Wear by particulates. Chemical Engineering Science , 1987, 42(4): 869-878
doi: 10.1016/0009-2509(87)80045-3
5 Ma Z Y, Tjong S C. In situ ceramic particle-reinforced aluminum matrix composites fabrication by reaction pressing in the TiO2 (Ti)-Al-HB (B2O3) systems. Metallurgical Material Transactions , 1997, 28(A): 1931-1942
6 Chen R, Iwabuchi A, Shimizu T, Shin H S, Mifune H. The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites. Wear , 1997, 213(1,2): 175-184
doi: 10.1016/S0043-1648(97)00123-3
7 Thakur S K, Dhindaw B K. The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear coefficient of friction and microhardness. Wear , 2001, 247(2): 191-201
doi: 10.1016/S0043-1648(00)00536-6
8 Kumar S, Balasubramanian V. Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites. Wear , 2008, 264(11-12): 1026-1034
doi: 10.1016/j.wear.2007.08.006
9 Modi O P, Yadav R P, Mondal D P, Dasgupta R, Das S, Yegneswaran A H. Abrasive wear of Zinc-Al alloy-10% Al2O3 composite through factorial design. Journal of Materials Science , 2001, 36(7): 1601-1607
doi: 10.1023/A:1017523214073
10 How H C, Baker T N. Dry sliding wear behavior of saffil-reinforced AA6061 composites. Wear , 1997, 210(1-2): 263-272
doi: 10.1016/S0043-1648(97)00060-4
11 Straffelini G, Bonollo F, Molinari A, Tiziani A. Influence of matrix hardness on the sliding behavior of 20 vol% Al2O3-particulate reinforced 6061 Al metal matrix composite. Wear , 1997, 211(2): 192-197
doi: 10.1016/S0043-1648(97)00119-1
12 Martin A, Rodrigues J, Llorca J. Temperature effects on the wear behavior of particulate reinforced Al-based composites. Wear , 1999, 225: 615-620
doi: 10.1016/S0043-1648(98)00385-8
13 Yu S Y, Ishii H, Tohgo K, Cho Y T, Diao D. Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite. Wear , 1997, 213(1-2): 21-28
doi: 10.1016/S0043-1648(97)00207-X
14 Liang Y N, Ma Z Y, Li S Z, Li S, Bi J. ffect of particle size on wear behaviour of SiC particulate-reinforced aluminum alloy composites. Journal of Materials Science Letters , 1995, 14(2): 114-116
doi: 10.1007/BF00456563
15 Chaudhury S K, Singh A K, Sivaramakrishnan C S, Panigrahi S C. Wear and friction behavior of spray formed and stir cast Al-2Mg-11TiO composites. Wear , 2005, 258(5,6): 759-767
doi: 10.1016/j.wear.2004.09.007
16 Basvarajappa S, Chandramohan G. Wear studies on metal matrix composites: A taguchi approach. Journal of Materials Science and Technology , 2005, 21(6): 845-850
17 Suresha S, Sridhara B K. Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon particulates. Composites Science and Technology , 2010, 70(11): 1652-1659
doi: 10.1016/j.compscitech.2010.06.013
18 Kok M. Computational investigation of testing parameter effects on abrasive wear behavior of Al2O3 particle reinforced MMCS using statistical analysis. International Journal of Advanced Manufacturing Technology , 2011, 52(1-4): 207-215
doi: 10.1007/s00170-010-2734-z
19 Prasad B K, Das S, Jha A K, Modi O P, Dasgupta R, Yegneswaran A H. Factor controlling the abrasive wear response of Zinc based alloys silicon carbide particle composite. Composite A , 1997, 28(4): 301-308
doi: 10.1016/S1359-835X(96)00115-7
20 Sahin Y. Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Materials & Design , 2003, 24(2): 95-103
doi: 10.1016/S0261-3069(02)00143-7
21 Rohatgi P K, Liu Y, Ray S. Friction and wear of metal matrix composites. ASM Hand Book , 2004, 18: 801-811
22 Deng J. Control problems of grey system. Systems & Control Letters , 1982, 1(5): 288-294
doi: 10.1016/S0167-6911(82)80025-X
23 Tsao C C. Grey-taguchi method to optimize the milling parameters of aluminum alloy. International Journal of Advanced Manufacturing Technology , 2009, 40(1-2): 41-48
doi: 10.1007/s00170-007-1314-3
24 Ravikiran A, Surappa M K. Effect of sliding speed on wear behaviour of A356 Al-30 wt.% SiCp MMC. Wear , 1997, 206(1,2): 33-38
doi: 10.1016/S0043-1648(96)07341-3
[1] Dawei ZHANG, Fan LI, Shuaipeng LI, Shengdun ZHAO. Finite element modeling of counter-roller spinning for large-sized aluminum alloy cylindrical parts[J]. Front. Mech. Eng., 2019, 14(3): 351-357.
[2] Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review[J]. Front. Mech. Eng., 2018, 13(4): 461-481.
[3] Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER. Determining casting defects in near-net shape casting aluminum parts by computed tomography[J]. Front. Mech. Eng., 2018, 13(1): 48-52.
[4] Lei DENG, Xinyun WANG, Junsong JIN, Juchen XIA. Precision forging technology for aluminum alloy[J]. Front. Mech. Eng., 2018, 13(1): 25-36.
[5] Zilin HUANG,Gang WANG,Shaopeng WEI,Changhong LI,Yiming RONG. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method[J]. Front. Mech. Eng., 2016, 11(3): 242-249.
[6] Rupesh CHALISGAONKAR, Jatinder KUMAR. Optimization of WEDM process of pure titanium with multiple performance characteristics using Taguchi’s DOE approach and utility concept[J]. Front Mech Eng, 2013, 8(2): 201-214.
[7] Tao FU, Jibin ZHAO, Weijun LIU. Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis[J]. Front Mech Eng, 2012, 7(4): 445-452.
[8] Meenu GUPTA, Surinder Kumar GILL. Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing[J]. Front Mech Eng, 2012, 7(4): 417-426.
[9] Christopher John NASSAU, N. Scott LITOFSKY, Yuyi LIN. Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis, and artificial neural network[J]. Front Mech Eng, 2012, 7(3): 247-255.
[10] Kamal JANGRA, Sandeep GROVER, Aman AGGARWAL. Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method[J]. Front Mech Eng, 2012, 7(3): 288-299.
[11] Chuntao JI, Lipeng DENG. Quality control based on electrode displacement and force in resistance spot welding[J]. Front Mech Eng Chin, 2010, 5(4): 412-417.
[12] Zhenyang LU, Pengfei HUANG, Wenning GAO, Yan LI, Hanpeng ZHANG, Shuyan YIN. ARC welding method for bonding steel with aluminum[J]. Front Mech Eng Chin, 2009, 4(2): 134-146.
[13] WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong. Parameter prediction in laser bending of aluminum alloy sheet[J]. Front. Mech. Eng., 2008, 3(3): 293-298.
[14] HUANG Yong, FAN Ding, FAN Qinghua. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy[J]. Front. Mech. Eng., 2007, 2(4): 442-447.
[15] GUO Zhipeng, XIONG Shoumei, CHO SangHyun, CHOI JeongKil. Interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy[J]. Front. Mech. Eng., 2007, 2(3): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed