Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (4) : 344-351    https://doi.org/10.1007/s11465-015-0364-8
RESEARCH ARTICLE
Linear quadratic optimal controller for cable-driven parallel robots
Saeed ABDOLSHAH1,*(),Erfan SHOJAEI BARJUEI2
1. Department of Management and Engineering, University of Padua, Padua, Italy
2. Department of Electric, Managerial and Mechanical Engineering, University of Udine, Udine, Italy
 Download: PDF(833 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large workspace, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional-integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cable-driven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.

Keywords accuracy      cable-driven parallel robot      linear quadratic optimal control     
Corresponding Author(s): Saeed ABDOLSHAH   
Online First Date: 26 November 2015    Issue Date: 03 December 2015
 Cite this article:   
Saeed ABDOLSHAH,Erfan SHOJAEI BARJUEI. Linear quadratic optimal controller for cable-driven parallel robots[J]. Front. Mech. Eng., 2015, 10(4): 344-351.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0364-8
https://academic.hep.com.cn/fme/EN/Y2015/V10/I4/344
Fig.1  The Feriba-3 cable-driven parallel robot. (a) Overall view; (b) statics diagram
Fig.2  Block diagram of the control system
Fig.3  Comparison of the open-loop and the LQ optimal controller for position of circular reference trajectory (X-Y plane) tracking for (a) X-axis, (b) Y-axis, and (c) sinusoidal rotation θ; The reference tracking error for the LQ optimal controller in terms of (d) X-axis, (e) Y-axis and (f) sinusoidal rotation θ
Fig.4  Comparison of the open-loop and the LQ optimal controller for trapezoidal reference trajectory for (a) X-axis, (b) Y-axis, and (c) sinusoidal rotation θ; the reference tracking error for the LQ optimal controller in terms of (d) X-axis, (e) Y-axis and (f) sinusoidal rotation θ
Fig.5  Cable tension in four cables for circular reference trajectory (X-Y plane) and sinusoidal rotation
Fig.6  Cable tension in four cables for trapezoidal trajectory and sinusoidal rotation
1 Abdolshah  S, Rosati  G. First experimental testing of a dynamic minimum tension control (DMTC) for cable driven parallel robots. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Springer International Publishing, 2015,239–248
2 Riechel  A T, Bosscher  P, Lipkin  H, . Concept paper: Cable-driven robots for use in hazardous environments. In: Proceedings of the 10th International Topical Meeting on Robotics and Remote Systems for Hazardous Environments. 2004
3 Cone  L L. Skycam: An aerial robotic camera system. Byte, 1985, 10(10): 122–132
4 Rosati  G, Gallina  P, Masiero  S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.   IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 560–569 doi:10.1109/TNSRE.2007.908560
5 Rosati  G, Zanotto  D, Secoli  R, . Design and control of two planar cable-driven robots for upper-limb neurorehabilitation. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, ICORR<Date>2009</Date>. Kyoto: IEEE, 2009, 560–565 doi:10.1109/ICORR.2009.5209551
6 Kawamura  S, Kino  H, Won  C. High-speed manipulation by using parallel wire-driven robots. Robotica, 2000, 18(01): 13–21 doi:10.1017/S0263574799002477
7 Yang  G, Mustafa  S K, Yeo  S H, . Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm. Frontiers of Mechanical Engineering, 2011, 6(1): 45–60 
https://doi.org/10.1007/s11465-011-0205-3
8 Bamdad  M. Analytical dynamic solution of a flexible cable-suspended manipulator. Frontiers of Mechanical Engineering, 2013, 8(4): 350–359
https://doi.org/10.1007/s11465-013-0271-9
9 Pott  A, Bruckmann  T, Mikelsons  L. Closed-form force distribution for parallel wire robots. Computational Kinematics, 2009, 26(1): 25–34
10 Gallina  P, Rosati  G. Manipulability of a planar wire driven haptic device. Mechanism and Machine Theory, 2002, 37(2): 215–228
https://doi.org/10.1016/S0094-114X(01)00076-3
11 Lamaury  J, Gouttefarde  M. Control of a large redundantly actuated cable-suspended parallel robot. In: Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe: IEEE, 2013, 4659–4664 doi:10.1109/ICRA.2013.6631240
12 Kino  H, Yahiro  T, Takemura  F, . Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots: Translational systems using the minimum number of wires under zero-gravity condition. IEEE Transactions on Robotics, 2007, 23(4): 803–812
https://doi.org/10.1109/TRO.2007.900633
13 Qi  L, Zhang  H, Duan  G. Task-space position/attitude tracking control of FAST fine tuning system. Frontiers of Mechanical Engineering in China, 2008, 3(4): 392–399
https://doi.org/10.1007/s11465-008-0056-8
14 Khosravi  M A, Taghirad  H D. Experimental performance of robust PID controller on a planar cable robot. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin: Springer, 2013, 337–352
15 Zi  B, Duan  B, Du  J,. Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics, 2008, 18(1): 1–12
https://doi.org/10.1016/j.mechatronics.2007.09.004
16 Alp  A B, Agrawal  S K. Cable suspended robots: Feedback controllers with positive inputs. In: Proceedings of the 2002 American Control Conference. Volume 1. IEEE, 2002, 815–820 
https://doi.org/10.1109/ACC.2002.1024915
17 Alikhani  A, Vali  M. Modeling and robust control of a new large scale suspended cable-driven robot under input constraint. In: Proceedings of 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Incheon: IEEE, 2011, 238–243 doi:10.1109/URAI.2011.6145969
18 Laroche  E, Chellal  R, Cuvillon  L, . A preliminary study for H∞ control of parallel cable-driven manipulators. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin: Springer, 2013, 353–369
19 Korayem  M, Tourajizadeh  H. Maximum DLCC of spatial cable robot for a predefined trajectory within the workspace using closed loop optimal control approach. Journal of Intelligent & Robotic Systems, 2011, 63(1): 75–99
https://doi.org/10.1007/s10846-010-9521-9
20 Gallina  P, Rosati  G, Rossi  A. 3-d.o.f. wire driven planar haptic interface. Journal of Intelligent & Robotic Systems, 2001, 32(1): 23–36
https://doi.org/10.1023/A:1012095609866
21 Anderson  B D O, Moore  J B. Optimal Control: Linear Quadratic Methods. Upper Saddle River: Prentice-Hall, 2007
[1] Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO. Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages[J]. Front. Mech. Eng., 2019, 14(3): 255-272.
[2] Mingjin XU,Yifan DAI,Xuhui XIE,Lin ZHOU,Shengyi LI,Wenqiang PENG. Ion beam figuring of continuous phase plates based on the frequency filtering process[J]. Front. Mech. Eng., 2017, 12(1): 110-115.
[3] Guangbo HAO,Haiyang LI,Suzen KEMALCAN,Guimin CHEN,Jingjun YU. Understanding coupled factors that affect the modelling accuracy of typical planar compliant mechanisms[J]. Front. Mech. Eng., 2016, 11(2): 129-134.
[4] Li LI, Michael Yu WANG, Peng WEI. XFEM schemes for level set based structural optimization[J]. Front Mech Eng, 2012, 7(4): 335-356.
[5] TUO Yaofei, CHEN Jianjun, ZHANG Chijiang, CHEN Yongqin. Reliability analysis of kinematic accuracy for the elastic slider-crank mechanism[J]. Front. Mech. Eng., 2007, 2(2): 214-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed