Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2016, Vol. 11 Issue (2) : 204-212    https://doi.org/10.1007/s11465-016-0380-3
RESEARCH ARTICLE
Vibration suppression of speed-controlled robots with nonlinear control
Paolo BOSCARIOL(),Alessandro GASPARETTO
Dipartimento Politecnico di Ingegneria e Architettura (DPIA), University of Udine, Via delle Scienze 206, Udine 33100, Italy
 Download: PDF(767 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

Keywords industrial robot      nonlinear control      vibration damping      model-free control      motion control     
Corresponding Author(s): Paolo BOSCARIOL   
Online First Date: 29 April 2016    Issue Date: 29 June 2016
 Cite this article:   
Paolo BOSCARIOL,Alessandro GASPARETTO. Vibration suppression of speed-controlled robots with nonlinear control[J]. Front. Mech. Eng., 2016, 11(2): 204-212.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-016-0380-3
https://academic.hep.com.cn/fme/EN/Y2016/V11/I2/204
Fig.1  Block diagram schematics of each axis of the robot
Fig.2  Three-axis Cartesian robot used in the experimental tests
Fig.3  Step tracking: Comparison between PI and nonlinear control
Fig.4  Step response: Measured acceleration on the end-effector, comparison between PI and nonlinear control
Fig.5  Step response: Control action u, comparison between PI and nonlinear control
Fig.6  Trajectory in the operative space
Fig.7  Trajectory: Speed of X, Y, and Z axes
Fig.8  Trajectory: Acceleration of X, Y, and Z axes
Axis PI control Nonlinear control
X kp=0.2, ki=0.005 α=0.2, β=0.000, γ=0.005
Y kp=1.5, ki=0.010 α=1.5, β=?0.005, γ=0.010
Z kp=1.5, ki=0.010 α=1.5, β=?0.004, γ=0.001
Tab.1  Trajectory tracking: Tuning parameters
Fig.9  Trajectory tracking: End-effector position along the X axis, comparison between PI and nonlinear control
Fig.10  Trajectory tracking: End-effector position along the Y axis, comparison between PI and nonlinear control
Fig.11  Trajectory tracking: End-effector position along the Z axis, comparison between PI and nonlinear control
Fig.12  End-effector acceleration along the Y axis: Comparison between PI and nonlinear control
1 Siciliano B, Khatib O. Springer Handbook of Robotics. Berlin: Springer, 2008
2 Book W J. Modeling, design, and control of flexible manipulator arms: A tutorial review. In: Proceedings of the 29th IEEE Conference on Decision and Control. Honolulu: IEEE, 1990, 500–506
https://doi.org/10.1109/CDC.1990.203648
3 Dwivedy S K, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, 2006, 41(7): 749–777
https://doi.org/10.1016/j.mechmachtheory.2006.01.014
4 Loughlin C, Albu-Schäffer A, Haddadin S, The DLR lightweight robot: Design and control concepts for robots in human environments. Industrial Robot, 2007, 34(5): 376–385
https://doi.org/10.1108/01439910710774386
5 Troccaz J, Hagn U, Nickl M, The DLR MIRO: A versatile lightweight robot for surgical applications. Industrial Robot, 2008, 35(4): 324–336
https://doi.org/10.1108/01439910810876427
6 Benosman M, Le Vey G. Control of flexible manipulators: A survey. Robotica, 2004, 22(05): 533–545
https://doi.org/10.1017/S0263574703005642
7 Åström K J, Hägglund T. PID Controllers: Theory, Design and Tuning. Instrument Society of America, 1995
8 Takatsu H, Itoh T. Future needs for control theory in industry-report of the control technology survey in Japanese industry. IEEE Transactions on Control Systems Technology, 1999, 7(3): 298– 305
https://doi.org/10.1109/87.761050
9 Vilanova R, Visioli A. PID control in the third millennium. Berlin: Springer, 2012
10 Wills A G, Bates D, Fleming A J, Model predictive control applied to constraint handling in active noise and vibration control. IEEE Transactions on Control Systems Technology, 2008, 16(1): 3–12
https://doi.org/10.1109/TCST.2007.903062
11 Richalet J. Industrial applications of model based predictive control. Automatica, 1993, 29(5): 1251–1274
https://doi.org/10.1016/0005-1098(93)90049-Y
12 Kwon W H, Han S H. Receding Horizon Control: Model Predictive Control for State Models. Springer Science & Business Media, 2006
13 Dieulot J Y, Colas F, Benhammi T, Fast tuning and comparison of predictive functional control strategies. Control Engineering and Applied Informatics, 2009, 11(1): 27–33
14 Boscariol P, Zanotto V. Design of a controller for trajectory tracking for compliant mechanisms with effective vibration suppression. Robotica, 2012, 30(01): 15–29
https://doi.org/10.1017/S0263574711000415
15 Chiacchio P, Sciavicco L, Siciliano B. The potential of model-based control algorithms for improving industrial robot tracking performance. In: Proceedings of the IEEE International Workshop on Intelligent Motion Control. IEEE, 1990, 2: 831–836
https://doi.org/10.1109/IMC.1990.687429
16 Gasparetto A, Boscariol P, Lanzutti A, Trajectory planning in robotics. Mathematics in Computer Science, 2012, 6(3): 269–279
https://doi.org/10.1007/s11786-012-0123-8
17 Singhose W. Command shaping for flexible systems: A review of the first 50 years. International Journal of Precision Engineering and Manufacturing, 2009, 10(4): 153–168
https://doi.org/10.1007/s12541-009-0084-2
18 Singh T, Singhose W. Input shaping/time delay control of maneuvering flexible structures. In: Proceedings of the 2002 American Control Conference. IEEE, 2002, 3: 1717–1731
https://doi.org/10.1109/ACC.2002.1023813
19 Singh T. Jerk limited input shapers. In: Proceedings of the 2004 American Control Conference. Boston: IEEE, 2004, 5: 4825–4830
20 Singhose W E, Seering W P, Singer N C. Input shaping for vibration reduction with specified insensitivity to modeling errors. Japan/USA Symposium on Flexible Automation, 1996, 1: 307–313
21 Vaughan J, Yano A, Singhose W. Comparison of robust input shapers. Journal of Sound and Vibration, 2008, 315(4–5): 797–815
https://doi.org/10.1016/j.jsv.2008.02.032
22 Gallina P, Trevisani A. Delayed reference control of a two-mass elastic system. Journal of Vibration and Control, 2004, 10(1): 135–159
https://doi.org/10.1177/107754604773684948
23 Boschetti G, Richiedei D, Trevisani A. Delayed reference control for multi-degree-of-freedom elastic systems: Theory and experimentation. Control Engineering Practice, 2011, 19(9): 1044–1055
https://doi.org/10.1016/j.conengprac.2011.05.006
24 Boschetti G, Caracciolo R, Richiedei D, Moving the suspended load of an overhead crane along a pre-specified path: A non-timebased approach. Robotics and Computer-integrated Manufacturing, 2014, 30(3): 256–264
https://doi.org/10.1016/j.rcim.2013.10.004
25 Gasparetto A, Vidoni R, Zanotto V. DFORCE: Delayed force reference control for master-slave robotic systems. Mechatronics, 2009, 19(5): 639–646
https://doi.org/10.1016/j.mechatronics.2009.01.010
26 Boscariol P, Gasparetto A, Vidoni R, A delayed force-reflecting haptic controller for master-slave neurosurgical robots. Advanced Robotics, 2015, 29(2): 127–138
https://doi.org/10.1080/01691864.2014.977947
27 Belanger P R, Dobrovolny P, Helmy A, Estimation of angular velocity and acceleration from shaft-encoder measurements. International Journal of Robotics Research, 1998, 17(11): 1225–1233
https://doi.org/10.1177/027836499801701107
28 Kovudhikulrungsri L, Koseki T. Precise speed estimation from a low-resolution encoder by dual-sampling-rate observer. IEEE/ASME Transactions on Mechatronics, 2006, 11(6): 661–670
https://doi.org/10.1109/TMECH.2006.886194
29 Siciliano B, Sciavicco L, Villani L, Robotics: Modelling, Planning and Control. Springer, 2009
30 Krstic K, Kokotovic P V, Kanellakopoulos I. Nonlinear and Adaptive Control Design. Hoboken: John Wiley & Sons, Inc., 1995
31 Ioannou P A, Sun J. Robust Adaptive Control. New York: Courier Dover Publications, 2012
32 Boscariol P, Gasparetto A. Model-based trajectory planning for flexible-link mechanisms with bounded jerk. Robotics and Computer-integrated Manufacturing, 2013, 29(4): 90–99
https://doi.org/10.1016/j.rcim.2012.11.003
33 Barre P J, Bearee R, Borne P, Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. Journal of Intelligent and Robotic Systems, 2005, 42(3): 275–293
https://doi.org/10.1007/s10846-004-4002-7
34 Gasparetto A, Boscariol P, Lanzutti A, Path planning and trajectory planning algorithms: A general overview. In: Carbone G, Gomez-Bravo F, eds. Motion and Operation Planning of Robotic Systems. Berlin: Springer, 2015, 3–27
35 Boscariol P, Gasparetto A, Vidoni R. Planning continuous-jerk trajectories for industrial manipulators. In: Proceedings of ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. Nantes: American Society of Mechanical Engineers, 2012, 127–136
[1] Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG. Untethered quadrupedal hopping and bounding on a trampoline[J]. Front. Mech. Eng., 2020, 15(2): 181-192.
[2] Bing XU, Min CHENG. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends[J]. Front. Mech. Eng., 2018, 13(2): 151-166.
[3] D. L. ZHANG,Y. H. CHEN,Y. P. CHEN. A pre-compensation method of the systematic contouring error for repetitive command paths[J]. Front. Mech. Eng., 2015, 10(4): 367-372.
[4] Syed Ali AJWAD,Jamshed IQBAL,Muhammad Imran ULLAH,Adeel MEHMOOD. A systematic review of current and emergent manipulator control approaches[J]. Front. Mech. Eng., 2015, 10(2): 198-210.
[5] LU Zhen-li, MA Shu-gen, LI Bin, WANG Yue-chao. Design of a cyclic inhibitory CPG controller for the locomotion of a snakelike robot[J]. Front. Mech. Eng., 2006, 1(4): 396-402.
[6] HE Zhong-yun, LU Bing-heng, WANG Yi-qing, HONG Jun, TANG Yi-ping. An automated arc spray tooling system for rapid die-making of large-sized automobile body panels[J]. Front. Mech. Eng., 2006, 1(2): 209-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed