Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (1) : 12    https://doi.org/10.1007/s11465-021-0668-9
RESEARCH ARTICLE
Coupling evaluation for material removal and thermal control on precision milling machine tools
Kexu LAI1, Huajun CAO1(), Hongcheng LI2, Benjie LI3, Disheng HUANG1
1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
2. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunication, Chongqing 400065, China
3. College of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 Download: PDF(4356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Machine tools are one of the most representative machining systems in manufacturing. The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing. However, previous research merely regarded the material removal (MR) energy as useful energy consumption and ignored the useful energy consumed by thermal control (TC) for maintaining internal thermal stability and machining accuracy. In pursuit of energy-efficient, high-precision machining, more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC. Hence, the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy. An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage. Furthermore, the heat characteristics are analyzed, which can be adopted to represent machining accuracy. Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool, which overwhelms the energy consumption of MR. The forced cooling mode of TC results in a 7% reduction in cutting energy efficiency. Regression analysis shows that heat dissipation positively contributes 54.1% to machining accuracy, whereas heat generation negatively contributes 45.9%. This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy. It can provide a foundation for energy-efficient, high-precision machining of machine tools.

Keywords machine tools      cutting energy efficiency      thermal stability      machining accuracy      coupling evaluation     
Corresponding Author(s): Huajun CAO   
About author:

Miaojie Yang and Mahmood Brobbey Oppong contributed equally to this work.

Just Accepted Date: 11 March 2022   Issue Date: 29 April 2022
 Cite this article:   
Kexu LAI,Huajun CAO,Hongcheng LI, et al. Coupling evaluation for material removal and thermal control on precision milling machine tools[J]. Front. Mech. Eng., 2022, 17(1): 12.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-021-0668-9
https://academic.hep.com.cn/fme/EN/Y2022/V17/I1/12
Fig.1  Functional units of a typical milling machine tool.
Fig.2  Coupling relationship between MR and TC. (a) Power versus energy consumption and machining accuracy, (b) power versus cutting energy efficiency.
Fig.3  Power consumption profile of typical milling.
Fig.4  Typical end milling with a milling cutter.
Fig.5  Heat generation and dissipation of main spindle.
Fig.6  Heat generation and dissipation of cutting area.
Level Cutting speed, v c/(m?min?1) Feed per tooth, a f/(mm?z?1) Depth of cut, a p/mm
1 15 0.05 0.5
2 18 0.10 1.0
3 21 0.15 1.5
Tab.1  Cutting parameters and their levels
Experimental group vc/(m·min−1) af/( mm·z−1) ap/mm
1 15 0.05 0.5
2 18 0.10 0.5
3 21 0.15 0.5
4 18 0.05 1.0
5 21 0.10 1.0
6 15 0.15 1.0
7 21 0.05 1.5
8 15 0.10 1.5
9 18 0.15 1.5
Tab.2  Detailed information of orthogonal experiments
Fig.7  Trajectory of the cutting tool during cutting process.
Fig.8  Milling experimental setup: (a) milling cutter and workpiece, (b) temperature data acquisition device and laptop, (c) dial gauge, (d) power bus of the machine tool (left), power and quality analyzer (right).
Fig.9  Power consumption profile of the 4th group during different operation stages.
Fig.10  Composition and proportion of total energy consumption.
Fig.11  Change of η MRbefore and after the cooling mode.
Fig.12  Heat characteristics and flatness error of each experimental group.
Fig.13  Comprehensive comparisons in energy consumption, cutting energy efficiency, and machining accuracy: (a) total energy consumption and cutting energy efficiency, (b) energy consumption and flatness error.
Fig.14  3D surface map of energy consumption, cutting energy efficiency, and flatness error.
a e Cutting width
a f Feed rate per tooth
a p Depth of cut
c A Specific heat capacity of compressed air
c l i Specific heat capacity of auxiliary liquid
CF, xF, yF, uF, qF, wF, and kF c Cutting coefficients
COPj Coefficient of performance of the jth TC unit
d 0 Diameter of cutting tool
E b Energy consumed by basic functional units
E c Cutting energy
E f Energy requirements of feed motors during noncutting stage
E m s Energy requirement of the main spindle during noncutting stage
E M R Energy consumed by MR units
E MR-c Constant energy requirement of main spindle and feed axes during noncutting stage
E t c Energy requirement of the tool change system
E t Total energy consumption of machine tool
E T C Energy consumed by TC units
ETC-uj Electricity consumption of the jth TC unit
F c Cutting force
G w Machining accuracy
ΔL Thermal deformation of a certain component
m˙A Mass flow rate of compressed air
m˙li Mass flow rate of auxiliary liquid
m˙ha Mass flow rate of the hot air flowing into the electrostatic air filter
n Rotation speed of the main spindle
n1 Number of nozzles
P b Power of basic operation
Pc Cutting power
Pi Power of the ith MR unit
Pk Power consumption of the kth basic unit
P l Power loss related to MR
Pla Power loss of amplifier
Plim Power loss of inner motor
Plmf Power loss of mechanical transmission chains
P M R Power consumed by MR
P MR-c Power consumed by MR units during noncutting operation
P T C Power consumed by TC
P TC-c Power consumed by TC units during cooling operation
P TC-s Power consumed by TC units during standby operation
Q c Cutting heat
Q c h Heat transferred to chips
Q d Heat dissipation of machine tool
Qdca Heat taken away by compressed air
Qdha Heat dissipation of hot air
Qdj Heat taken away by the jth TC unit
Qdli Heat taken away by auxiliary liquid
Q g Heat generation of all heat sources
Q˙gms Heat generation of main spindle system
Q t Heat transferred to cutting tool
Q w p Heat transferred to workpiece
t c Cutting time
t h a Duration time of hot air
ti Operating time of the ith MR unit
tk Operating time of the kth basic-unit
t l i Duration time of auxiliary liquid
t A Usage time of compressed air
T a Ambient temperature
T h a Temperature of hot air
T l i,in Input temperature of auxiliary liquid
T l i,out Output temperature of auxiliary liquid
T o ut Air temperature at corresponding nozzle
T s Temperature inside machine tool
ΔT Temperature rise of a certain component
v c Cutting speed
z Tooth number of milling cutter
η Convert efficiency of mechanical energy to heat
ηm Spindle motor efficiency
ηMR Cutting energy efficiency
ηTC Energy consumption ratio of TC
δFE Flatness error
  
1 H Khatib. IEA world energy outlook 2010—a comment. Energy Policy, 2011, 39( 5): 2507– 2511
https://doi.org/10.1016/j.enpol.2011.02.017
2 C W Park, K S Kwon, W B Kim, B K Min, S J Park, I H Sung, Y S Yoon, K S Lee, J H Lee, J Seok. Energy consumption reduction technology in manufacturing—a selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 2009, 10( 5): 151– 173
https://doi.org/10.1007/s12541-009-0107-z
3 W Cai, C H Liu, K H Lai, L Li, J Cunha, L K Hu. Energy performance certification in mechanical manufacturing industry: a review and analysis. Energy Conversion and Management, 2019, 186 : 415– 432
https://doi.org/10.1016/j.enconman.2019.02.041
4 W Cai, K H Lai. Sustainability assessment of mechanical manufacturing systems in the industrial sector. Renewable and Sustainable Energy Reviews, 2021, 135 : 110169
https://doi.org/10.1016/j.rser.2020.110169
5 Q L Wang, F Liu, C B Li. An integrated method for assessing the energy efficiency of machining workshop. Journal of Cleaner Production, 2013, 52 : 122– 133
https://doi.org/10.1016/j.jclepro.2013.03.020
6 G Mouzon, M B Yildirim, J Twomey. Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 2007, 45( 18−19): 4247– 4271
https://doi.org/10.1080/00207540701450013
7 T Gutowski, J Dahmus, A Thiriez. Electrical energy requirements for manufacturing processes. In: Proceedings of the 13th CIRP International Conference on Life Cycle Engineering. Leuven: CIRP, 2006: 623– 628
8 N Sihag, K S Sangwan. A systematic literature review on machine tool energy consumption. Journal of Cleaner Production, 2020, 275 : 123125
https://doi.org/10.1016/j.jclepro.2020.123125
9 Y He, F Liu, T Wu, F P Zhong, B Peng. Analysis and estimation of energy consumption for numerical control machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226( 2): 255– 266
https://doi.org/10.1177/0954405411417673
10 F Liu, J Xie, S Liu. A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 2015, 105 : 171– 177
https://doi.org/10.1016/j.jclepro.2014.09.058
11 J Xie, W Cai, Y B Du, Y Tang, J B Tuo. Modelling approach for energy efficiency of machining system based on torque model and angular velocity. Journal of Cleaner Production, 2021, 293 : 126249
https://doi.org/10.1016/j.jclepro.2021.126249
12 X Z Chen, C B Li, Y Tang, L Li, H C Li. Energy efficient cutting parameter optimization. Frontiers of Mechanical Engineering, 2021, 16( 2): 221– 248
https://doi.org/10.1007/s11465-020-0627-x
13 P L Li K Cheng P Y Jiang K Katchasuwanmanee. Investigation on industrial dataspace for advanced machining workshops: enabling machining operations control with domain knowledge and application case studies. Journal of Intelligent Manufacturing, 2022, 33(1): 103− 119
14 K Katchasuwanmanee, R Bateman, K Cheng. Development of the energy-smart production management system (e-ProMan): a big data driven approach, analysis and optimisation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230( 5): 972– 978
https://doi.org/10.1177%2F0954405415586711
15 J Mayr, J Jedrzejewski, E Uhlmann, M A Donmez, W Knapp, F Härtig, K Wendt, T Moriwaki, P Shore, R Schmitt, C Brecher, T Würz, K Wegener. Thermal issues in machine tools. CIRP Annals-Manufacturing Technology, 2012, 61( 2): 771– 791
https://doi.org/10.1016/j.cirp.2012.05.008
16 B Denkena, E Abele, C Brecher, M A Dittrich, S Kara, M Mori. Energy efficient machine tools. CIRP Annals, 2020, 69( 2): 646– 667
https://doi.org/10.1016/j.cirp.2020.05.008
17 M Moradnazhad, H O Unver. Energy consumption characteristics of turn-mill machining. The International Journal of Advanced Manufacturing Technology, 2017, 91( 5−8): 1991– 2016
https://doi.org/10.1007/s00170-016-9868-6
18 B J Li, H J Cao, B Hon, L Liu, X Gao. Exergy-based energy efficiency evaluation model for machine tools considering thermal stability. International Journal of Precision Engineering and Manufacturing: Green Technology, 2021, 8( 2): 423– 434
https://doi.org/10.1007/s40684-020-00204-8
19 C Okwudire, J Rodgers. Design and control of a novel hybrid feed drive for high performance and energy efficient machining. CIRP Annals: Manufacturing Technology, 2013, 62( 1): 391– 394
https://doi.org/10.1016/j.cirp.2013.03.139
20 Q L Wang F Liu. Mathematical model of multi-source energy flows for CNC machine tools. Journal of Mechanical Engineering, 2013, 49(7): 5− 12 (in Chinese)
21 L Wen, A Zein, S Kara, C Herrmann. An investigation into fixed energy consumption of machine tools. In: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering. Leuven, 2011: 268– 273
https://doi.org/10.1007%2F978-3-642-19692-8_47
22 X Yang, H J Cao, L B Zhu, B J Li. A 3D chip geometry driven predictive method for heat-loading performance of hob tooth in high-speed dry hobbing. The International Journal of Advanced Manufacturing Technology, 2017, 93( 5−8): 1583– 1594
https://doi.org/10.1007/s00170-017-0631-4
23 L B Zhu, H J Cao, D Zeng, X Yang, B J Li. Multi-variable driving thermal energy control model of dry hobbing machine tool. The International Journal of Advanced Manufacturing Technology, 2017, 92( 1−4): 259– 275
https://doi.org/10.1007/s00170-017-0086-7
24 H J Cao, L B Zhu, X G Li, P Chen, Y P Chen. Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. The International Journal of Advanced Manufacturing Technology, 2016, 86( 5−8): 1739– 1751
https://doi.org/10.1007/s00170-015-8314-5
25 K Großmann. Thermo-energetic Design of Machine Tools. Berlin: Springer International Publishing, 2015
26 Z A Zailani, R Hamidon, M S Hussin, M F M A Hamzas, H Hadi. The influence of solid lubricant in machining parameter of milling operation. International Journal of Engineering Science and Technology, 2011, 3( 6): 5221– 5226
27 C Brecher, D Jasper, M Fey. Analysis of new, energy-efficient hydraulic unit for machine tools. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4( 1): 5– 11
https://doi.org/10.1007/s40684-017-0001-6
28 G Y Zhao, Z Y Liu, Y He, H J Cao, Y B Guo. Energy consumption in machining: classification, prediction, and reduction strategy. Energy, 2017, 133 : 142– 157
https://doi.org/10.1016/j.energy.2017.05.110
29 ISO . Machine tools−environmental evaluation of machine tools−Part 1: design methodology for energy-efficient machine tools. 2017. Available at ISO website
30 R A Walsh. Handbook of Machining and Metalworking Calculations. New York: McGraw-Hill, 2001: 159– 174
31 G Q Fu, C Tao, Y P Xie, C J Lu, H L Gao. Temperature-sensitive point selection for thermal error modeling of machine tool spindle by considering heat source regions. The International Journal of Advanced Manufacturing Technology, 2021, 112( 9−10): 2447– 2460
https://doi.org/10.1007/s00170-020-06417-0
32 B Denkena, B Bergmann, H Klemme. Cooling of motor spindles—a review. The International Journal of Advanced Manufacturing Technology, 2020, 110( 11−12): 3273– 3294
https://doi.org/10.1007/s00170-020-06069-0
33 A Iqbal, H C Zhang, L L Kong, G Hussain. A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process. Journal of Intelligent Manufacturing, 2015, 26( 6): 1217– 1232
https://doi.org/10.1007/s10845-013-0851-x
34 D W Wu. A new approach of formulating the transfer function for dynamic cutting processes. Journal of Engineering for Industry, 1989, 111( 1): 37– 47
https://doi.org/10.1115/1.3188730
35 K P Zhu, Y Zhang. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling. Mechanical Systems and Signal Processing, 2019, 115 : 147– 161
https://doi.org/10.1016/j.ymssp.2018.05.045
36 X Yang, H J Cao, Y P Chen, L B Zhu, B J Li. An analytical model of chip heat-carrying capacity for high-speed dry hobbing based on 3D chip geometry. International Journal of Precision Engineering and Manufacturing, 2017, 18( 2): 245– 256
https://doi.org/10.1007/s12541-017-0032-5
37 T Kozai, S Sakaguchi, T Akiyama, K Yamada, K Ohshima. Design and management of PFALs. In: Kozai T, Niu G, Takagaki M, eds. Plant Factory. 2nd ed. Salt Lake City: Academic Press, 2020: 357– 375
https://doi.org/10.1016/B978-0-12-816691-8.00025-X
[1] Xiaodong JIN, Yuefa FANG, Dan ZHANG, Xueling LUO. Design and analysis of a class of redundant collaborative manipulators with 2D large rotational angles[J]. Front. Mech. Eng., 2020, 15(1): 66-80.
[2] Jianmin HU, Zude ZHOU, Quan LIU, Ping LOU, Junwei YAN, Ruiya LI. Key point selection in large-scale FBG temperature sensors for thermal error modeling of heavy-duty CNC machine tools[J]. Front. Mech. Eng., 2019, 14(4): 442-451.
[3] Mingjin XU,Yifan DAI,Xuhui XIE,Lin ZHOU,Shengyi LI,Wenqiang PENG. Ion beam figuring of continuous phase plates based on the frequency filtering process[J]. Front. Mech. Eng., 2017, 12(1): 110-115.
[4] LI Xiaoli, LIU Huanlao. Measurement and analysis of typical motion error traces from a circular test[J]. Front. Mech. Eng., 2008, 3(2): 146-150.
[5] MAO Xinyong, LI Bin, SHI Hanmin, LIU Hongqi, LI Xi, LI Peigen. Error measurement and assemble error correction of a 3D-step-gauge[J]. Front. Mech. Eng., 2007, 2(4): 388-393.
[6] LIU Huanlao, SHI Hanming, LI Bin, ZHOU Huichen. New method for computer numerical control machine tool calibration: Relay method[J]. Front. Mech. Eng., 2007, 2(3): 301-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed