Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (4) : 47    https://doi.org/10.1007/s11465-022-0703-5
RESEARCH ARTICLE
Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC
Jianzhao WU1,2, Chaoyong ZHANG1(), Kunlei LIAN3, Jiahao SUN1, Shuaikun ZHANG1
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
3. Walmart Global Technology, Walmart Inc., Bentonville, AR 72712, USA
 Download: PDF(8933 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In fiber laser beam welding (LBW), the selection of optimal processing parameters is challenging and plays a key role in improving the bead geometry and welding quality. This study proposes a multi-objective optimization framework by combining an ensemble of metamodels (EMs) with the multi-objective artificial bee colony algorithm (MOABC) to identify the optimal welding parameters. An inverse proportional weighting method that considers the leave-one-out prediction error is presented to construct EM, which incorporates the competitive strengths of three metamodels. EM constructs the correlation between processing parameters (laser power, welding speed, and distance defocus) and bead geometries (bead width, depth of penetration, neck width, and neck depth) with average errors of 10.95%, 7.04%, 7.63%, and 8.62%, respectively. On the basis of EM, MOABC is employed to approximate the Pareto front, and verification experiments show that the relative errors are less than 14.67%. Furthermore, the main effect and the interaction effect of processing parameters on bead geometries are studied. Results demonstrate that the proposed EM-MOABC is effective in guiding actual fiber LBW applications.

Keywords laser beam welding      parameter optimization      metamodel      multi-objective     
Corresponding Author(s): Chaoyong ZHANG   
Just Accepted Date: 27 May 2022   Issue Date: 12 December 2022
 Cite this article:   
Jianzhao WU,Chaoyong ZHANG,Kunlei LIAN, et al. Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC[J]. Front. Mech. Eng., 2022, 17(4): 47.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0703-5
https://academic.hep.com.cn/fme/EN/Y2022/V17/I4/47
ElementsMass proportion/wt.%
C≤0.030
Si≤1.000
Mn≤2.000
P≤0.045
S≤0.030
Cr16.000?18.000
Mo2.000?3.000
Ni10.000?14.000
N≤0.100
FeBalance
Tab.1  Chemical composition of AISI 316L stainless steel
Fig.1  Fiber laser beam welding platform.
Fig.2  Processing schematic and welding bead profile.
Factor levelP/kWS/(m·min?1)D/mm
12.0002.500.0
22.3752.75?0.5
32.7503.00?1.0
43.1253.25?1.5
53.5003.50?2.0
Tab.2  LBW experimental factors and levels
Foraging of beesFunction optimization
Positions of food sourcesFeasible solutions
Nectar amountFitness of solutions
ForagingSearch for solutions
Gathering of nectarCalculation of fitness
Tab.3  Corresponding relationship between foraging and function optimization
Fig.3  Workflow of multi-objective artificial bee colony algorithm.
Fig.4  Proposed data-driven framework combining the ensemble of metamodels with multi-objective artificial bee colony algorithm. MOABC: multi-objective artificial bee colony algorithm, KRG: kriging, RBF: radial basis function, SVR: support vector regression.
Fig.5  Error evaluations of the three metamodels for different responses: (a) Wb, (b) Dp, (c) Wn, and (d) Dn.
Fig.6  EMs for the four output responses: (a) Wb, (b) Dp, (c) Wn, and (d) Dn.
Fig.7  Comparison of experimental and predicted results for (a) Wb, (b) Dp, (c) Wn, and (d) Dn.
Fig.8  Main effects of processing parameters on bead geometries: (a) Wb, (b) Dp, (c) Wn, and (d) Dn.
Fig.9  First-order interaction diagrams of the processing parameters on (a) Wb, (b) Dp, (c) Wn, and (d) Dn.
ParameterValue
Food number60
Maximum number of preserved food40
Limit for scout20
Limit for external archive20
Deep mining times15
Iteration numbers300
Tab.4  Parameter settings of MOABC in the optimization
Fig.10  Pareto front for the bead geometries.
Fig.11  Bead geometry of the two optimal solutions selected.
Bead geometryExperimental value/mmOptimized value/mmRelative error/%
Wb1.8461.7206.83
Dp3.1192.9276.16
Wn0.7660.8055.09
Dn0.8270.8260.12
Tab.5  Validation results of the No. 1 optimal solution
Bead geometryExperimental value/mmOptimized value/mmRelative error/%
Wb1.9981.76411.71
Dp3.0972.9185.78
Wn0.8770.8840.80
Dn0.8590.73314.67
Tab.6  Validation results of the No. 2 optimal solution
Fig.12  Cross-sections using random process parameters.
Fig.13  Microstructures of the welding bead for the No. 1 optimal solution.
Fig.14  Bead geometries in the No. 3 Taguchi L25 experiment.
Fig.15  Microstructures of the welding bead profiles beside the centerline: (a) No. 2 optimal solution and (b) No. 3 Taguchi L25 experiment.
Abbreviations
ABCArtificial bee colony
DOEDesign of experiment
EMEnsemble of metamodel
KRGKriging
LBWLaser beam welding
LOOLeave-one-out
MOABCMulti-objective artificial bee colony algorithm
PDASPrimary dendrite arm spacing
RBFRadial basis function
RSMResponse surface method
SVRSupport vector regression
Variables
C0Specific heat at constant pressure of the workpiece
CmPredetermined maximum cycle number of the searching processes for the bees
CrRepeated cycle number of the searching processes for the bees
DDefocus distance
DnNeck depth
Dn+, Dn?Maximum and minimum values of Dn in the Pareto optimal solutions, respectively
DpDepth of penetration
|Dp?H|+, |Dp?H|?Maximum and minimum values of |Dp?H| in the Pareto optimal solutions, respectively
E1k, E2kLOO errors of the first and second metamodels selected for the variable k, respectively
EalGeneralized relative maximum absolute error under the leave-one-out method
ErRelative error of the four outputs
EslGeneralized root mean square error under the leave-one-out method
f^(?)Approximation approach using the metamodel
f^i(x)Predictive response of the ith individual metamodel at sample point x
f(xi)Actual experimental value of the ith sample point
f^(x?i)Predictive response from the metamodel trained using the full data sets with the ith sample point excluded out
f^1k(x), f^2k(x)First and second metamodel selected for the variable k, respectively
f^Ek(x)Prediction value of the integrated EM for the variable k
f^EDn(x)Integrated EM for the variable Dn
fitness(Xi)Quality (fitness value) of the food source of Xi
HThickness of the workpiece
kOutput response variable
KThermal conductivity of the workpiece
mNumber of sample points
PLaser power
PiProbability value for onlooker bees to select the ith food source
Qu feasible solutions (food sources)
rand(0, 1)A random number between 0 and 1
SWelding speed
SnSum of normalized bead geometries
tDuration of temperature variation
TReference temperature
T0Room temperature
uNumber of the initial solution population in colony initialization phase
vDimension of each initial solution in colony initialization phase
VeExperimental values of the four outputs
VpPredicted values of the four outputs
w1, w2, w3, w4Weighting values of the four optimization objectives
WbBead width
Wb+, Wb?Maximum and minimum values of Wb in the Pareto optimal solutions, respectively
WnNeck width
Wn+, Wn?Maximum and minimum values of Wn in the Pareto optimal solutions, respectively
xInput value of the metamodel
xi,jjth dimension of the ith feasible solution
xp,jOne of the u food sources other than xi,j
xmax,j, xmin,jUpper and lower bounds of the jth dimension, respectively
Xiith feasible solution (food source) in MOABC
YOutput response of the metamodel
αCoefficient vector of the metamodel
δDifference between the maximum and minimum mean bead geometries
εStochastic factor of the metamodel
θi,jNeighborhood of xi,j for searching a better food source
ρMaterial density of the workpiece
?i,jChange rate of food sources during the employed bees phase
ω1k, ω2kWeights of first and second metamodel for the variable k, respectively
  
No.Processing parametersExperimental results
P/kWS/(m·min?1)D/mmWb/mmDp/mmWn/mmDn/mm
12.0003.500.01.0551.6860.6790.410
22.0003.25?0.51.2041.8230.5830.601
32.0003.00?1.01.2661.7020.5690.625
42.0002.75?1.51.1951.9500.5120.806
52.0002.50?2.01.5462.2410.6550.624
62.3753.250.01.2662.1230.6280.700
72.3753.00?0.51.3232.0590.6080.691
82.3752.75?1.01.3012.1680.6310.724
92.3752.50?1.51.5382.2250.6510.699
102.3753.50?2.01.3062.1520.6290.470
112.7503.000.01.5672.2890.6700.780
122.7502.75?0.51.4972.3390.7170.684
132.7502.50?1.01.7772.2650.6010.847
142.7503.50?1.51.5102.5340.7120.561
152.7503.25?2.01.5762.3400.6720.628
163.1252.750.01.5792.7200.6680.965
173.1252.50?0.51.5872.9210.6691.046
183.1253.50?1.01.5182.2280.6710.631
193.1253.25?1.51.6372.8040.7240.668
203.1253.00?2.01.5992.8630.5990.914
213.5002.500.01.9272.8200.7890.792
223.5003.50?0.51.4182.4470.8250.576
233.5003.25?1.01.8752.7590.6960.812
243.5003.00?1.51.7192.9660.7380.871
253.5002.75?2.01.7982.9170.8840.718
  Table A1 Fiber LBW processing parameters and experimental results
1 L J Huang , X M Hua , D S Wu , Y X Ye . Role of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloy. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 913–925
https://doi.org/10.1007/s00170-019-03502-x
2 K M Hong , Y C Shin . Prospects of laser welding technology in the automotive industry: a review. Journal of Materials Processing Technology, 2017, 245: 46–69
https://doi.org/10.1016/j.jmatprotec.2017.02.008
3 J Stavridis , A Papacharalampopoulos , P Stavropoulos . Quality assessment in laser welding: a critical review. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1825–1847
https://doi.org/10.1007/s00170-017-0461-4
4 Z Zeng , B Panton , J P Oliveira , A Han , Y N Zhou . Dissimilar laser welding of NiTi shape memory alloy and copper. Smart Materials and Structures, 2015, 24(12): 125036
https://doi.org/10.1088/0964-1726/24/12/125036
5 J P Oliveira , F M Braz Fernandes , R M Miranda , N Schell , J L Ocana . Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi. Materials Characterization, 2016, 119: 148–151
https://doi.org/10.1016/j.matchar.2016.08.001
6 J P Oliveira , J J Shen , J D Escobar , C A F Salvador , N Schell , N Zhou , O Benafan . Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy. Materials & Design, 2021, 202: 109533
https://doi.org/10.1016/j.matdes.2021.109533
7 A Ruggiero , L Tricarico , A G Olabi , K Y Benyounis . Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Optics & Laser Technology, 2011, 43(1): 82–90
https://doi.org/10.1016/j.optlastec.2010.05.008
8 J P Oliveira , J J Shen , Z Zeng , J M Park , Y T Choi , N Schell , E Maawad , N Zhou , H S Kim . Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scripta Materialia, 2022, 206: 114219
https://doi.org/10.1016/j.scriptamat.2021.114219
9 P Jiang , C C Wang , Q Zhou , X Y Shao , L S Shu , X B Li . Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II. Advances in Engineering Software, 2016, 99: 147–160
https://doi.org/10.1016/j.advengsoft.2016.06.006
10 E Assunção , L Quintino , R Miranda . Comparative study of laser welding in tailor blanks for the automotive industry. The International Journal of Advanced Manufacturing Technology, 2010, 49(1): 123–131
https://doi.org/10.1007/s00170-009-2385-0
11 C Kumar , M Das , C P Paul , K S Bindra . Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti−6Al−4V alloy. Optics & Laser Technology, 2018, 105: 306–321
https://doi.org/10.1016/j.optlastec.2018.02.021
12 M Sokolov , A Salminen . Improving laser beam welding efficiency. Engineering, 2014, 6(09): 559–571
https://doi.org/10.4236/eng.2014.69057
13 T E Abioye , N Mustar , H Zuhailawati , I Suhaina . Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 1951–1962
https://doi.org/10.1007/s00170-019-03310-3
14 M J Zhang , T T Liu , R Z Hu , Z Y Mu , S Chen , G Y Chen . Understanding root humping in high-power laser welding of stainless steels: a combination approach. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5353–5364
https://doi.org/10.1007/s00170-020-05021-6
15 G Shanthos Kumar , K Raghukandan , S Saravanan , N Sivagurumanikandan . Optimization of parameters to attain higher tensile strength in pulsed Nd: YAG laser welded Hastelloy C-276–Monel 400 sheets. Infrared Physics & Technology, 2019, 100: 1–10
https://doi.org/10.1016/j.infrared.2019.05.002
16 Y Du , T Mukherjee , T DebRoy . Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Applied Materials Today, 2021, 24: 101123
https://doi.org/10.1016/j.apmt.2021.101123
17 Z Huang , H J Cao , D Zeng , W W Ge , C M Duan . A carbon efficiency approach for laser welding environmental performance assessment and the process parameters decision-making. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 2433–2446
https://doi.org/10.1007/s00170-021-07011-8
18 A P Mackwood , R C Crafer . Thermal modelling of laser welding and related processes: a literature review. Optics & Laser Technology, 2005, 37(2): 99–115
https://doi.org/10.1016/j.optlastec.2004.02.017
19 S T Peng , T Li , J L Zhao , S P Lv , G Z Tan , M M Dong , H C Zhang . Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II. Journal of Cleaner Production, 2019, 227: 58–69
https://doi.org/10.1016/j.jclepro.2019.04.187
20 M Akbari , M H Shojaeefard , P Asadi , A Khalkhali . Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2317–2333
https://doi.org/10.1016/S1003-6326(17)60258-9
21 M Akbari , P Asadi , P Zolghadr , A Khalkhali . Multicriteria optimization of mechanical properties of aluminum composites reinforced with different reinforcing particles type. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232(3): 323–337
https://doi.org/10.1177/0954408917704994
22 S Srivastava , R K Garg . Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 2017, 25: 296–305
https://doi.org/10.1016/j.jmapro.2016.12.016
23 Y M Rong , Z Zhang , G J Zhang , C Yue , Y F Gu , Y Huang , C M Wang , X Y Shao . Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Optics and Lasers in Engineering, 2015, 67: 94–104
https://doi.org/10.1016/j.optlaseng.2014.10.009
24 S H Wang , L D Zhu , J Y H Fuh , H Q Zhang , W T Yan . Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Optics and Lasers in Engineering, 2020, 127: 105950
https://doi.org/10.1016/j.optlaseng.2019.105950
25 G G Wang , S Shan . Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007, 129(4): 370–380
https://doi.org/10.1115/1.2429697
26 T Goel , R T Haftka , W Shyy , N V Queipo . Ensemble of surrogates. Structural and Multidisciplinary Optimization, 2007, 33(3): 199–216
https://doi.org/10.1007/s00158-006-0051-9
27 A Younis , Z M Dong . Trends, features, and tests of common and recently introduced global optimization methods. Engineering Optimization, 2010, 42(8): 691–718
https://doi.org/10.1080/03052150903386674
28 H C Dong , C S Li , B W Song , P Wang . Multi-surrogate-based Differential Evolution with multi-start exploration (MDEME) for computationally expensive optimization. Advances in Engineering Software, 2018, 123: 62–76
https://doi.org/10.1016/j.advengsoft.2018.06.001
29 A Díaz-Manríquez , G Toscano , Coello C A Coello . Comparison of metamodeling techniques in evolutionary algorithms. Soft Computing, 2017, 21(19): 5647–5663
https://doi.org/10.1007/s00500-016-2140-z
30 R Jin , W Chen , T W Simpson . Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 2001, 23(1): 1–13
https://doi.org/10.1007/s00158-001-0160-4
31 E Acar . Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Systems with Applications, 2015, 42(5): 2703–2709
https://doi.org/10.1016/j.eswa.2014.11.020
32 X G Song , G Y Sun , G Y Li , W Z Gao , Q Li . Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Structural and Multidisciplinary Optimization, 2013, 47(2): 221–231
https://doi.org/10.1007/s00158-012-0820-6
33 Z M Gao , X Y Shao , P Jiang , L C Cao , Q Zhou , C Yue , Y Liu , C M Wang . Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using kriging model and GA. Optics & Laser Technology, 2016, 83: 153–162
https://doi.org/10.1016/j.optlastec.2016.04.001
34 W A Ayoola , W J Suder , S W Williams . Parameters controlling weld bead profile in conduction laser welding. Journal of Materials Processing Technology, 2017, 249: 522–530
https://doi.org/10.1016/j.jmatprotec.2017.06.026
35 Y J Huang , X D Gao , B Ma , G Q Liu , N F Zhang , Y X Zhang , D Y You . Optimization of weld strength for laser welding of steel to PMMA using Taguchi design method. Optics & Laser Technology, 2021, 136: 106726
https://doi.org/10.1016/j.optlastec.2020.106726
36 X W Cai , H B Qiu , L Gao , X K Li , X Y Shao . A hybrid global optimization method based on multiple metamodels. Engineering Computations, 2018, 35(1): 71–90
https://doi.org/10.1108/EC-05-2016-0158
37 D Karaboga , B Basturk . A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459–471
https://doi.org/10.1007/s10898-007-9149-x
38 H F Jia , H Z Miao , G D Tian , M C Zhou , Y X Feng , Z W Li , J C Li . Multiobjective bike repositioning in bike-sharing systems via a modified artificial bee colony algorithm. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 909–920
https://doi.org/10.1109/TASE.2019.2950964
39 W J Wang , G D Tian , M N Chen , F Tao , C Y Zhao , A AI-Ahmari , Z W Li , Z G Jiang . Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production, 2020, 245: 118714
https://doi.org/10.1016/j.jclepro.2019.118714
40 B K Verma , D Kumar . A review on artificial bee colony algorithm. International Journal of Engineering and Technology, 2013, 2(3): 175–186
https://doi.org/10.14419/ijet.v2i3.1030
41 Y P Ren , H Y Jin , F Zhao , T Qu , L L Meng , C Y Zhang , B Zhang , G Wang , J W Sutherland . A multiobjective disassembly planning for value recovery and energy conservation from end-of-life products. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 791–803
https://doi.org/10.1109/TASE.2020.2987391
42 K Manikya Kanti , P Srinivasa Rao . Prediction of bead geometry in pulsed GMA welding using back propagation neural network. Journal of Materials Processing Technology, 2008, 200(1–3): 300–305
https://doi.org/10.1016/j.jmatprotec.2007.09.034
43 M Ragavendran , N Chandrasekhar , R Ravikumar , R Saxena , M Vasudevan , A K Bhaduri . Optimization of hybrid laser—TIG welding of 316LN steel using response surface methodology (RSM). Optics and Lasers in Engineering, 2017, 94: 27–36
https://doi.org/10.1016/j.optlaseng.2017.02.015
44 F Zhang , T T Zhou . Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. Journal of Intelligent Manufacturing, 2019, 30(5): 2217–2230
https://doi.org/10.1007/s10845-017-1378-3
45 P Jiang , L C Cao , Q Zhou , Z M Gao , Y M Rong , X Y Shao . Optimization of welding process parameters by combining kriging surrogate with particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 2016, 86(9): 2473–2483
https://doi.org/10.1007/s00170-016-8382-1
46 H M Soltani , M Tayebi . Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding. Journal of Alloys and Compounds, 2018, 767: 112–121
https://doi.org/10.1016/j.jallcom.2018.06.302
47 J Y Shao , G Yu , X L He , S X Li , R Chen , Y Zhao . Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Optics & Laser Technology, 2019, 119: 105662
https://doi.org/10.1016/j.optlastec.2019.105662
48 Z Y Yang , K N Jin , H Fang , J S He . Multi-scale simulation of solidification behavior and microstructure evolution during vacuum electron beam welding of Al-Cu alloy. International Journal of Heat and Mass Transfer, 2021, 172: 121156
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121156
49 N Kumar , M Mukherjee , A Bandyopadhyay . Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Optics & Laser Technology, 2017, 88: 24–39
https://doi.org/10.1016/j.optlastec.2016.08.018
50 R Lenart , M Eshraghi . Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy. Computational Materials Science, 2020, 172: 109374
https://doi.org/10.1016/j.commatsci.2019.109374
51 E M F de Souza Silva , G S da Fonseca , E A Ferreira . Microstructural and selective dissolution analysis of 316L austenitic stainless steel. Journal of Materials Research and Technology, 2021, 15: 4317–4329
https://doi.org/10.1016/j.jmrt.2021.10.009
52 M Ragavendran , M Vasudevan . Laser and hybrid laser welding of type 316L(N) austenitic stainless steel plates. Materials and Manufacturing Processes, 2020, 35(8): 922–934
https://doi.org/10.1080/10426914.2020.1745231
53 G R Mohammed , M Ishak , S N Aqida , H A Abdulhadi . Effects of heat input on microstructure, corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: a review. Metals, 2017, 7(2): 39
https://doi.org/10.3390/met7020039
54 W D Huang , X G Geng , Y H Zhou . Primary spacing selection of constrained dendritic growth. Journal of Crystal Growth, 1993, 134(1–2): 105–115
https://doi.org/10.1016/0022-0248(93)90015-O
55 W Kurz , D J Fisher . Dendrite growth at the limit of stability: tip radius and spacing. Acta Metallurgica, 1981, 29(1): 11–20
https://doi.org/10.1016/0001-6160(81)90082-1
56 D G McCartney , J D Hunt . Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys. Acta Metallurgica, 1981, 29(11): 1851–1863
https://doi.org/10.1016/0001-6160(81)90111-5
[1] Hongsheng SHENG, Jinghua XU, Shuyou ZHANG, Jianrong TAN, Kang WANG. Build orientation determination of multi-feature mechanical parts in selective laser melting via multi-objective decision making[J]. Front. Mech. Eng., 2023, 18(2): 21-.
[2] Junhui ZHANG, Yining SHEN, Minyao GAN, Qi SU, Fei LYU, Bing XU, Yuan CHEN. Multi-objective optimization of surface texture for the slipper/swash plate interface in EHA pumps[J]. Front. Mech. Eng., 2022, 17(4): 48-.
[3] Wenchao XU, Dengfeng WANG. Fatigue and impact analysis and multi-objective optimization design of Mg/Al assembled wheel considering riveting residual stress[J]. Front. Mech. Eng., 2022, 17(3): 45-.
[4] Long WEN, You WANG, Xinyu LI. A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis[J]. Front. Mech. Eng., 2022, 17(2): 17-.
[5] Shuai HUANG, Wenwen JIN, Bo WU, Xin ZHANG, Aman ELMI, Youmin HU. Robust ensemble of metamodels based on the hybrid error measure[J]. Front. Mech. Eng., 2021, 16(3): 623-634.
[6] Zunpu HAN, Yong WANG, De TIAN. Ant colony optimization for assembly sequence planning based on parameters optimization[J]. Front. Mech. Eng., 2021, 16(2): 393-409.
[7] Genshen LIU, Huaiju LIU, Caichao ZHU, Tianyu MAO, Gang HU. Design optimization of a wind turbine gear transmission based on fatigue reliability sensitivity[J]. Front. Mech. Eng., 2021, 16(1): 61-79.
[8] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[9] Muhammad Farhan AUSAF,Liang GAO,Xinyu LI. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm[J]. Front. Mech. Eng., 2015, 10(4): 392-404.
[10] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part II: Case studies[J]. Front. Mech. Eng., 2015, 10(2): 145-153.
[11] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part I: Theory[J]. Front. Mech. Eng., 2015, 10(2): 138-144.
[12] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
[13] Sunil Dhingra,Gian Bhushan,Kashyap Kumar Dubey. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II[J]. Front. Mech. Eng., 2014, 9(1): 81-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed