|
|
Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC |
Jianzhao WU1,2, Chaoyong ZHANG1( ), Kunlei LIAN3, Jiahao SUN1, Shuaikun ZHANG1 |
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2. Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore 3. Walmart Global Technology, Walmart Inc., Bentonville, AR 72712, USA |
|
|
Abstract In fiber laser beam welding (LBW), the selection of optimal processing parameters is challenging and plays a key role in improving the bead geometry and welding quality. This study proposes a multi-objective optimization framework by combining an ensemble of metamodels (EMs) with the multi-objective artificial bee colony algorithm (MOABC) to identify the optimal welding parameters. An inverse proportional weighting method that considers the leave-one-out prediction error is presented to construct EM, which incorporates the competitive strengths of three metamodels. EM constructs the correlation between processing parameters (laser power, welding speed, and distance defocus) and bead geometries (bead width, depth of penetration, neck width, and neck depth) with average errors of 10.95%, 7.04%, 7.63%, and 8.62%, respectively. On the basis of EM, MOABC is employed to approximate the Pareto front, and verification experiments show that the relative errors are less than 14.67%. Furthermore, the main effect and the interaction effect of processing parameters on bead geometries are studied. Results demonstrate that the proposed EM-MOABC is effective in guiding actual fiber LBW applications.
|
Keywords
laser beam welding
parameter optimization
metamodel
multi-objective
|
Corresponding Author(s):
Chaoyong ZHANG
|
Just Accepted Date: 27 May 2022
Issue Date: 12 December 2022
|
|
1 |
L J Huang , X M Hua , D S Wu , Y X Ye . Role of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloy. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 913–925
https://doi.org/10.1007/s00170-019-03502-x
|
2 |
K M Hong , Y C Shin . Prospects of laser welding technology in the automotive industry: a review. Journal of Materials Processing Technology, 2017, 245: 46–69
https://doi.org/10.1016/j.jmatprotec.2017.02.008
|
3 |
J Stavridis , A Papacharalampopoulos , P Stavropoulos . Quality assessment in laser welding: a critical review. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1825–1847
https://doi.org/10.1007/s00170-017-0461-4
|
4 |
Z Zeng , B Panton , J P Oliveira , A Han , Y N Zhou . Dissimilar laser welding of NiTi shape memory alloy and copper. Smart Materials and Structures, 2015, 24(12): 125036
https://doi.org/10.1088/0964-1726/24/12/125036
|
5 |
J P Oliveira , F M Braz Fernandes , R M Miranda , N Schell , J L Ocana . Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi. Materials Characterization, 2016, 119: 148–151
https://doi.org/10.1016/j.matchar.2016.08.001
|
6 |
J P Oliveira , J J Shen , J D Escobar , C A F Salvador , N Schell , N Zhou , O Benafan . Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy. Materials & Design, 2021, 202: 109533
https://doi.org/10.1016/j.matdes.2021.109533
|
7 |
A Ruggiero , L Tricarico , A G Olabi , K Y Benyounis . Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Optics & Laser Technology, 2011, 43(1): 82–90
https://doi.org/10.1016/j.optlastec.2010.05.008
|
8 |
J P Oliveira , J J Shen , Z Zeng , J M Park , Y T Choi , N Schell , E Maawad , N Zhou , H S Kim . Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scripta Materialia, 2022, 206: 114219
https://doi.org/10.1016/j.scriptamat.2021.114219
|
9 |
P Jiang , C C Wang , Q Zhou , X Y Shao , L S Shu , X B Li . Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II. Advances in Engineering Software, 2016, 99: 147–160
https://doi.org/10.1016/j.advengsoft.2016.06.006
|
10 |
E Assunção , L Quintino , R Miranda . Comparative study of laser welding in tailor blanks for the automotive industry. The International Journal of Advanced Manufacturing Technology, 2010, 49(1): 123–131
https://doi.org/10.1007/s00170-009-2385-0
|
11 |
C Kumar , M Das , C P Paul , K S Bindra . Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti−6Al−4V alloy. Optics & Laser Technology, 2018, 105: 306–321
https://doi.org/10.1016/j.optlastec.2018.02.021
|
12 |
M Sokolov , A Salminen . Improving laser beam welding efficiency. Engineering, 2014, 6(09): 559–571
https://doi.org/10.4236/eng.2014.69057
|
13 |
T E Abioye , N Mustar , H Zuhailawati , I Suhaina . Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 1951–1962
https://doi.org/10.1007/s00170-019-03310-3
|
14 |
M J Zhang , T T Liu , R Z Hu , Z Y Mu , S Chen , G Y Chen . Understanding root humping in high-power laser welding of stainless steels: a combination approach. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5353–5364
https://doi.org/10.1007/s00170-020-05021-6
|
15 |
G Shanthos Kumar , K Raghukandan , S Saravanan , N Sivagurumanikandan . Optimization of parameters to attain higher tensile strength in pulsed Nd: YAG laser welded Hastelloy C-276–Monel 400 sheets. Infrared Physics & Technology, 2019, 100: 1–10
https://doi.org/10.1016/j.infrared.2019.05.002
|
16 |
Y Du , T Mukherjee , T DebRoy . Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Applied Materials Today, 2021, 24: 101123
https://doi.org/10.1016/j.apmt.2021.101123
|
17 |
Z Huang , H J Cao , D Zeng , W W Ge , C M Duan . A carbon efficiency approach for laser welding environmental performance assessment and the process parameters decision-making. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 2433–2446
https://doi.org/10.1007/s00170-021-07011-8
|
18 |
A P Mackwood , R C Crafer . Thermal modelling of laser welding and related processes: a literature review. Optics & Laser Technology, 2005, 37(2): 99–115
https://doi.org/10.1016/j.optlastec.2004.02.017
|
19 |
S T Peng , T Li , J L Zhao , S P Lv , G Z Tan , M M Dong , H C Zhang . Towards energy and material efficient laser cladding process: modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II. Journal of Cleaner Production, 2019, 227: 58–69
https://doi.org/10.1016/j.jclepro.2019.04.187
|
20 |
M Akbari , M H Shojaeefard , P Asadi , A Khalkhali . Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2317–2333
https://doi.org/10.1016/S1003-6326(17)60258-9
|
21 |
M Akbari , P Asadi , P Zolghadr , A Khalkhali . Multicriteria optimization of mechanical properties of aluminum composites reinforced with different reinforcing particles type. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232(3): 323–337
https://doi.org/10.1177/0954408917704994
|
22 |
S Srivastava , R K Garg . Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 2017, 25: 296–305
https://doi.org/10.1016/j.jmapro.2016.12.016
|
23 |
Y M Rong , Z Zhang , G J Zhang , C Yue , Y F Gu , Y Huang , C M Wang , X Y Shao . Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Optics and Lasers in Engineering, 2015, 67: 94–104
https://doi.org/10.1016/j.optlaseng.2014.10.009
|
24 |
S H Wang , L D Zhu , J Y H Fuh , H Q Zhang , W T Yan . Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Optics and Lasers in Engineering, 2020, 127: 105950
https://doi.org/10.1016/j.optlaseng.2019.105950
|
25 |
G G Wang , S Shan . Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007, 129(4): 370–380
https://doi.org/10.1115/1.2429697
|
26 |
T Goel , R T Haftka , W Shyy , N V Queipo . Ensemble of surrogates. Structural and Multidisciplinary Optimization, 2007, 33(3): 199–216
https://doi.org/10.1007/s00158-006-0051-9
|
27 |
A Younis , Z M Dong . Trends, features, and tests of common and recently introduced global optimization methods. Engineering Optimization, 2010, 42(8): 691–718
https://doi.org/10.1080/03052150903386674
|
28 |
H C Dong , C S Li , B W Song , P Wang . Multi-surrogate-based Differential Evolution with multi-start exploration (MDEME) for computationally expensive optimization. Advances in Engineering Software, 2018, 123: 62–76
https://doi.org/10.1016/j.advengsoft.2018.06.001
|
29 |
A Díaz-Manríquez , G Toscano , Coello C A Coello . Comparison of metamodeling techniques in evolutionary algorithms. Soft Computing, 2017, 21(19): 5647–5663
https://doi.org/10.1007/s00500-016-2140-z
|
30 |
R Jin , W Chen , T W Simpson . Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 2001, 23(1): 1–13
https://doi.org/10.1007/s00158-001-0160-4
|
31 |
E Acar . Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Systems with Applications, 2015, 42(5): 2703–2709
https://doi.org/10.1016/j.eswa.2014.11.020
|
32 |
X G Song , G Y Sun , G Y Li , W Z Gao , Q Li . Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Structural and Multidisciplinary Optimization, 2013, 47(2): 221–231
https://doi.org/10.1007/s00158-012-0820-6
|
33 |
Z M Gao , X Y Shao , P Jiang , L C Cao , Q Zhou , C Yue , Y Liu , C M Wang . Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using kriging model and GA. Optics & Laser Technology, 2016, 83: 153–162
https://doi.org/10.1016/j.optlastec.2016.04.001
|
34 |
W A Ayoola , W J Suder , S W Williams . Parameters controlling weld bead profile in conduction laser welding. Journal of Materials Processing Technology, 2017, 249: 522–530
https://doi.org/10.1016/j.jmatprotec.2017.06.026
|
35 |
Y J Huang , X D Gao , B Ma , G Q Liu , N F Zhang , Y X Zhang , D Y You . Optimization of weld strength for laser welding of steel to PMMA using Taguchi design method. Optics & Laser Technology, 2021, 136: 106726
https://doi.org/10.1016/j.optlastec.2020.106726
|
36 |
X W Cai , H B Qiu , L Gao , X K Li , X Y Shao . A hybrid global optimization method based on multiple metamodels. Engineering Computations, 2018, 35(1): 71–90
https://doi.org/10.1108/EC-05-2016-0158
|
37 |
D Karaboga , B Basturk . A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459–471
https://doi.org/10.1007/s10898-007-9149-x
|
38 |
H F Jia , H Z Miao , G D Tian , M C Zhou , Y X Feng , Z W Li , J C Li . Multiobjective bike repositioning in bike-sharing systems via a modified artificial bee colony algorithm. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 909–920
https://doi.org/10.1109/TASE.2019.2950964
|
39 |
W J Wang , G D Tian , M N Chen , F Tao , C Y Zhao , A AI-Ahmari , Z W Li , Z G Jiang . Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. Journal of Cleaner Production, 2020, 245: 118714
https://doi.org/10.1016/j.jclepro.2019.118714
|
40 |
B K Verma , D Kumar . A review on artificial bee colony algorithm. International Journal of Engineering and Technology, 2013, 2(3): 175–186
https://doi.org/10.14419/ijet.v2i3.1030
|
41 |
Y P Ren , H Y Jin , F Zhao , T Qu , L L Meng , C Y Zhang , B Zhang , G Wang , J W Sutherland . A multiobjective disassembly planning for value recovery and energy conservation from end-of-life products. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 791–803
https://doi.org/10.1109/TASE.2020.2987391
|
42 |
K Manikya Kanti , P Srinivasa Rao . Prediction of bead geometry in pulsed GMA welding using back propagation neural network. Journal of Materials Processing Technology, 2008, 200(1–3): 300–305
https://doi.org/10.1016/j.jmatprotec.2007.09.034
|
43 |
M Ragavendran , N Chandrasekhar , R Ravikumar , R Saxena , M Vasudevan , A K Bhaduri . Optimization of hybrid laser—TIG welding of 316LN steel using response surface methodology (RSM). Optics and Lasers in Engineering, 2017, 94: 27–36
https://doi.org/10.1016/j.optlaseng.2017.02.015
|
44 |
F Zhang , T T Zhou . Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. Journal of Intelligent Manufacturing, 2019, 30(5): 2217–2230
https://doi.org/10.1007/s10845-017-1378-3
|
45 |
P Jiang , L C Cao , Q Zhou , Z M Gao , Y M Rong , X Y Shao . Optimization of welding process parameters by combining kriging surrogate with particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 2016, 86(9): 2473–2483
https://doi.org/10.1007/s00170-016-8382-1
|
46 |
H M Soltani , M Tayebi . Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding. Journal of Alloys and Compounds, 2018, 767: 112–121
https://doi.org/10.1016/j.jallcom.2018.06.302
|
47 |
J Y Shao , G Yu , X L He , S X Li , R Chen , Y Zhao . Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Optics & Laser Technology, 2019, 119: 105662
https://doi.org/10.1016/j.optlastec.2019.105662
|
48 |
Z Y Yang , K N Jin , H Fang , J S He . Multi-scale simulation of solidification behavior and microstructure evolution during vacuum electron beam welding of Al-Cu alloy. International Journal of Heat and Mass Transfer, 2021, 172: 121156
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121156
|
49 |
N Kumar , M Mukherjee , A Bandyopadhyay . Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Optics & Laser Technology, 2017, 88: 24–39
https://doi.org/10.1016/j.optlastec.2016.08.018
|
50 |
R Lenart , M Eshraghi . Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy. Computational Materials Science, 2020, 172: 109374
https://doi.org/10.1016/j.commatsci.2019.109374
|
51 |
E M F de Souza Silva , G S da Fonseca , E A Ferreira . Microstructural and selective dissolution analysis of 316L austenitic stainless steel. Journal of Materials Research and Technology, 2021, 15: 4317–4329
https://doi.org/10.1016/j.jmrt.2021.10.009
|
52 |
M Ragavendran , M Vasudevan . Laser and hybrid laser welding of type 316L(N) austenitic stainless steel plates. Materials and Manufacturing Processes, 2020, 35(8): 922–934
https://doi.org/10.1080/10426914.2020.1745231
|
53 |
G R Mohammed , M Ishak , S N Aqida , H A Abdulhadi . Effects of heat input on microstructure, corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: a review. Metals, 2017, 7(2): 39
https://doi.org/10.3390/met7020039
|
54 |
W D Huang , X G Geng , Y H Zhou . Primary spacing selection of constrained dendritic growth. Journal of Crystal Growth, 1993, 134(1–2): 105–115
https://doi.org/10.1016/0022-0248(93)90015-O
|
55 |
W Kurz , D J Fisher . Dendrite growth at the limit of stability: tip radius and spacing. Acta Metallurgica, 1981, 29(1): 11–20
https://doi.org/10.1016/0001-6160(81)90082-1
|
56 |
D G McCartney , J D Hunt . Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys. Acta Metallurgica, 1981, 29(11): 1851–1863
https://doi.org/10.1016/0001-6160(81)90111-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|