Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 242-251    https://doi.org/10.1007/s11465-009-0068-z
REVIEW ARTICLE
Semi-active vibration control using piezoelectric actuators in smart structures
Jinhao QIU(), Hongli JI, Kongjun ZHU
Aeronautic Science Key Laboratory for Smart Materials and Structures College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 Download: PDF(190 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The piezoelectric materials, as the most widely used functional materials in smart structures, have many outstanding advantages for sensors and actuators, especially in vibration control, because of their excellent mechanical-electrical coupling characteristics and frequency response characteristics. Semi-active vibration control based on state switching and pulse switching has been receiving much attention over the past decade because of several advantages. Compared with standard passive piezoelectric damping, these new semi-passive techniques offer higher robustness. Compared with active damping systems, their implementation does not require any sophisticated signal processing systems or any bulky power amplifier. In this review article, the principles of the semi-active control methods based on switched shunt circuit, including state-switched method, synchronized switch damping techniques, and active control theory-based switching techniques, and their recent developments are introduced. Moreover, the future directions of research in semi-active control are also summarized.

Keywords smart structure      semi-active method      vibration control      piezoelectric actuator     
Corresponding Author(s): QIU Jinhao,Email:qiu@nuaa.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Jinhao QIU,Hongli JI,Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0068-z
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/242
Fig.1  Schematic of three piezoelectric configurations used in this study. (a) Passive resistive shunt; (b) state-switched: open circuit to short circuit; (c) state-switched: open circuit to resistive circuit
systemeffective damping ratio
passive resistive shunt0.22
state-switched OC-SC0.12
state-switched OC-RS0.19
Tab.1  Effective damping ratios for passive and state-switched systems.
Fig.2  Principle of SSDS technique
Fig.3  Principle of SSDI technique
Fig.4  Principle of SSDV technique
1 Simpson J, Schweiger J. Industrial approach to piezoelectric damping of large fighter aircraft components. In: Proc. SPIE Smart Structures and Materials: Industrial and Commercial Application of Smart Structures Technologies , 1998, 3326: 34–46
2 Wu S, Turner T L, Rizzi S A. pizoelectric shunt vibration damping of an F-15 panel under high-acoustic excitation. In: Proc. SPIE Smart Structures and Materials: Damping and Isolation , 2000, 3989: 276–287
3 Hopkins M A, Henderson D A, Moses R W, Ryall T, Zimcik D G, Spangler R L. Active vibration-suppression systems applied to twin-tail buffering. In: Proc. SPIE Smart Structures and Materials: Industrial and Commercial Application of Smart Structures Technologies , 1998, 3326: 27–33
4 Kim S, Han C, Yun C. Improvement of aeroelastic stability of hingeless helicopter rotor blade by passive piezoelectric damping. In: Proc. SPIE Smart Structures and Materials: Passive Damping and Isolation , 1999, 3672: 131–141
5 Zhang J M, Chang W, Varadan V K, Varadan V V. Passive underwater acoustic damping using shunted piezoelectric coatings. IOP Journal of Smart Materials and Structures , 2001, 10: 414–420
doi: 10.1088/0964-1726/10/2/404
6 Hagood N W, Chung W H, Flowtow A von. Modeling of piezoelectric actuator dynamics for active structural control. Journal of Intelligent Material Systems and Structures , 1990, 1: 327–353
doi: 10.1177/1045389X9000100305
7 Hagood N W, Crawley E F. Experimental investigations of passive enhancement of damping space structures. Journal of Guidance, Control and Dynamics , 1991, 14(6): 1100–1109
doi: 10.2514/3.20763
8 Hollkamp J J. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. Journal of Intelligent Material Systems and Structures , 1994, 5:49–56
doi: 10.1177/1045389X9400500106
9 Wang K W, Lai J S, Yu W K. Energy-based parametric control approach for structural vibration suppression via semi-active piezoelectric networks. Transaction of ASME, Journal Vibration and Acoustics , 1996, 115: 505–509
doi: 10.1115/1.2888213
10 Davis C L, Lesieutre G A, Dosch J. Tunable electrically shunted piezoceramic vibration absorber. In: Proceedings of SPIE, Smart Structures and Materials: Passive Damping and Isolation, San Diego, CA , 1997: 51–59
11 Davis C L, Lesieutre G A. An actively tuned solid-state piezoelectric vibration absorber. In: Proceedings of SPIE, Smart Structures and Materials . 1998, 3327: 169–182
12 Clark W W. Semi-active vibration control with piezoelectric materials as variable stiffness actuators. In: Proceedings 1000 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Part 4 , 1999, 2623–2629
13 Richard C, Guyomar D, Audigier D, Ching G. Semi-passive damping using continuous switching of a piezoelectric device. In: Proceedings of the SPIE Smart Structures and Materials Conference: Passive Damping and Isolation, San Diego , 1998, 3672: 104–111
14 Richard C, Guyomar D, Audigier D, Bassaler H. Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. In: Proceedings of SPIE International Symposium on Smart Structures and Materials: Damping and Isolation , 2000, 3989: 288–299
15 Onoda J, Makihara K, Minesugi K. Energy-recycling semi-active method for vibration suppression with piezoelectric transducers. AIAA Journal , 2003, 41(4): 711–719
doi: 10.2514/2.2002
16 Makihara K, Onoda J, Minesugi K. Low-Energy-Consumption hybrid vibration suppression based on an energy-recycling approach. AIAA Journal , 2005, 43(8): 1706–1715
doi: 10.2514/1.14223
17 Cunefare K A. State-switched absorber for vibration control of point-excited beams. Journal of Intelligent Material Systems and Structures , 2002, 13: 97–105
doi: 10.1177/104538902761402495
18 Clark W. Vibration control with state-switched piezoelectric materials. Journal of intelligent material systems and structures , 2000, 11(4): 263–271
19 Corr L R, Clark W. Energy dissipation analysis of piezoceramic semi-active vibration control. Journal of intelligent material systems and structures , 2001, 12(11): 729–736
doi: 10.1177/104538901400438028
20 Badel A, Sebald G, Guyomar D, Lallart M, Lefeuvre E, Richard C, Qiu J. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of Acoustics Society American , 2006, 119(5): 2815–2825
doi: 10.1121/1.2184149
21 Guyomar D, Richard C, Petit L. Non-linear system for vibration damping. 142th Meeting of Acoustical Society of America, Fort Lauderdale, USA , 2001
22 Petit L, Lefeuvre E, Richard C, Guyomar D. A broadband semi passive piezoelectric technique for structural damping. In: Proceedings of SPIE International Symposium on Smart Structures and Materials: Damping and Isolation, San Diego, CA, USA , 2004
23 Lefeuvre E, Guyomar D, Petit L, Richard C, Badel A. Semi-passive structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures , 2006, 17(8/9): 653–660
doi: 10.1177/1045389X06055810
24 Faiz A, Guyomar L, Petit L, Buttay C. Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and actuators , 2006, 128: 230–237
doi: 10.1016/j.sna.2006.02.021
25 Ji H L, Qiu J H, Badel A, Zhu K J. Semi-active vibration control of a composite beam using an adaptive SSDV approach. Journal of Intelligent Material Systems and Structures , 2009, 20(3): 401–412
26 Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures , 200
doi: 10.1177/ 1045389X08099967
27 Makihara K, Onoda J, Minesugi K. A self-sensing method for switching vibration suppression with a piezoelectric actuator. Smart Materials and Structures , 2007, 16(2): 455–461
doi: 10.1088/0964-1726/16/2/025
28 Makihara K, Onoda J, Minesugi K. Using tuned electrical resonance to enhance bang-bang vibration control. AIAA Journal , 2007, 45(2): 497–504
doi: 10.2514/1.21736
29 Makihara K, Onoda J, Minesugi K. Novel approach to self-sensing actuation for semi-active vibration suppression. AIAA Journal , 2006, 44(7): 1445–1453
doi: 10.2514/1.16018
30 Makihara K, Onoda J, Minesugi K. Behavior of piezoelectric transducer on energy-recycling semi-active vibration suppression. AIAA Journal , 2006, 44(2): 411–413
doi: 10.2514/1.9811
31 Makihara K, Onoda J, Minesugi K. Comprehensive assessment of semi-active vibration suppression including energy analysis. Journal of Vibration and Acoustics , 2007, 12984–93
doi: 10.1115/1.2345675
32 Corr L R, Clark W W. A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Transactions of the ASME , 2003, 125: 214–222
doi: 10.1115/1.1547682
33 Ji H L, Qiu J H, Zhao Y C, Zhu K J. A study on semi-active vibration control using piezoelectric elements. Journal of Vibration Engineering , (in press) (in Chinese)
34 Guyomar D, Badel A. Non-linear semi-passive multi-modal vibration damping: An efficient probabilistic approach. Journal of Sound and Vibration , 2006, 294: 249–68
doi: 10.1016/j.jsv.2005.11.010
35 Guyomar D, Richard C, Mohammadi S. Semi-passive random vibration control based on statistics. Journal of Sound and Vibration , 2007, 30(7): 818–833
doi: 10.1016/j.jsv.2007.07.008
36 Ji H L, Qiu J H, Zhu K J, Chen Y S, Badel A. Multi-modal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures , (in press)
37 Niederberger D, Morari M. An autonomous shunt circuit for vibration damping. Smart Material and Structure , 2006, 15: 359–364
doi: 10.1088/0964-1726/15/2/016
38 Lallart M, Lefeuvre E, Richard C, Guyomar D. Self-powered circuit for broadband, multimodal piezoelectric vibration control. Sensors and Actuators A , 2007, 143: 377–382
doi: 10.1016/j.sna.2007.11.017
39 Richard C, Guyomar D, Lefeuvre E. Self-powered Electronic Breaker with Automatic Switching by Detecting Maxima or Minima of Potential Difference Between its Power Electrodes Patent # PCT/FR2005/003000, publication number: WO/2007/063194, 2007
40 Yabu T, Onoda J. Non-power-supply semi-active vibration suppression with piezoelectric actuator. In: Proceedings of the JSASS/JSME Structures Conference 2005, 47: 48–50
[1] Tomoki SAKURAI, Shin MORISHITA. Seismic response reduction of a three-story building by an MR grease damper[J]. Front. Mech. Eng., 2017, 12(2): 224-233.
[2] Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Front. Mech. Eng., 2015, 10(1): 37-42.
[3] N. KATAYAMA, K. ISHIMURA, K. MINESUGI, DANIEL J. INMAN. Shape control of multi-cellular inflatable panels[J]. Front Mech Eng, 2013, 8(3): 276-282.
[4] Shinya SUGIYAMA, Tomoki SAKURAI, Shin MORISHITA. Vibration control of a structure using Magneto-Rheological grease damper[J]. Front Mech Eng, 2013, 8(3): 261-267.
[5] Jinxin LIU, Xuefeng CHEN, Zhengjia HE. Frequency domain active vibration control of a flexible plate based on neural networks[J]. Front Mech Eng, 2013, 8(2): 109-117.
[6] Jinhao QIU, Hongli JI. Research on applications of piezoelectric materials in smart structures[J]. Front Mech Eng, 2011, 6(1): 99-117.
[7] Dan WU, Zhichun YANG, Hao SUN, . Vibration control efficiency of piezoelectric shunt damping system[J]. Front. Mech. Eng., 2009, 4(4): 441-446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed