Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 252-263    https://doi.org/10.1007/s11465-009-0037-6
RESEARCH ARTICLE
Burnett simulations of gas flow and heat transfer in microchannels
Fubing BAO, Jianzhong LIN()
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018,China
 Download: PDF(282 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In micro- and nanoscale gas flows, the flow falls into the transition flow regime. There are not enough molecule collisions and the gas deviates from the equilibrium. The Navier-Stokes equations fail to describe the gas flow in this regime. The direct simulation Monte Carlo method converges slowly and requires lots of computational time. As a result, the high-order Burnett equations are used to study the gas flow and heat transfer characteristics in micro- and nanoscale gas flows in this paper. The Burnett equations are first reviewed, and the augmented Burnett equations with high-order slip boundary conditions are then used to model the gas flow and heat transfer in Couette and Poiseuille flows in the transition regime.

Keywords micro- and nanoscale gas flow      slip-transition flow regime      Burnett equations      numerical simulation     
Corresponding Author(s): LIN Jianzhong,Email:mecjzlin@yahoo.com   
Issue Date: 05 September 2009
 Cite this article:   
Fubing BAO,Jianzhong LIN. Burnett simulations of gas flow and heat transfer in microchannels[J]. Front Mech Eng Chin, 2009, 4(3): 252-263.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0037-6
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/252
Fig.1  Schematic of micro Couette flow
Fig.2  Variation of wall heat flux with (=3)
Fig.3  Variation of the wall shear stress with (=3)
Fig.4  Variation of temperature jumps at the wall with at different Mach numbers
Fig.5  Variation of velocity slips at the wall with at different Mach numbers
Fig.6  Schematic of Poiseuille flow
Fig.7  Pressure distributions along the channel
Fig.8  Mass flow rate versus inlet pressure
Fig.9  Velocity profiles at three locations, /=0.2, 0.5, and 0.8
Fig.10  Centerline velocities along the channel
Fig.11  Slip velocities of Burnett and - equations at different
Fig.12  Velocity profiles of Burnett and - equations at different at =0.5
Fig.13  Deviations of the pressure from the linear distribution at five different pressure ratios
Fig.14  Slip velocities along the channel with and without thermal creep effect
Fig.15  Gas temperatures along the channel
Fig.16  Variation of along the channel at different
Fig.17  Variation of along the channel at different
Fig.18  Temperature profiles at different axial locations
Fig.19  Variation of along the channel at different
Fig.20  Variation of along the channel at different
1 Harley J C, Huand Y, Bau H, Zemel J N. Gas flow in micro-channels. Journal of Fluid Mechanics , 1995, 284: 257–274
doi: 10.1017/S0022112095000358
2 Arkilic E B, Schmidt M A, Breuer K S. Gaseous slip flow in long microchannels. Journal of Microelectromechanical Systems , 1997, 6(2): 167–178
doi: 10.1109/84.585795
3 Agarwal R K, Yun K Y, Balakrishnan R. Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Physics of Fluids , 2001, 13(10): 3061–3085
doi: 10.1063/1.1397256
4 Gad-el-Hak M. The fluid mechanics of microdevices- the freeman scholar lecture. Journal of Fluids Engineering-Transactions of the Asme , 1999, 121(1): 5–33
doi: 10.1115/1.2822013
5 Karniadakis G, Beskok A, Aluru N R. Microflows and Nanoflows. Fundamentals and Simulation , Germany: Springer, 2005
6 Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. New York: Oxford University Press, 1994
7 Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press,1970
8 Fiscko K A, Chapman D R. Comparison of Burnett, super-Burnett and Monte Carlo solutions for hypersonic shock structure. In: Proceedings of the 16th International Symposium on Rarefied Gas Dynamics , 1988
9 Bao F B, Lin J Z. Burnett simulation of gas flow and heat transfer in micro Poiseuille flow. International Journal of Heat and Mass Transfer , 2008, 51: 4139–4144
doi: 10.1016/j.ijheatmasstransfer.2007.12.009
10 Bao F B, Lin J Z. Burnett simulations of gas flow in microchannels. Fluid Dynamics Research , 2008
11 Bao F B, Lin J Z, Shi X. Burnett simulation of flow and heat transfer in micro Couette flow using second-order slip conditions. Heat and Mass Transfer , 2007, 43(6): 559–566
doi: 10.1007/s00231-006-0134-6
12 Lockerby D A, Reese J M. High-resolution Burnett simulations of micro Couette flow and heat transfer. Journal of Computational Physics , 2003, 188(2): 333–347
doi: 10.1016/S0021-9991(03)00162-1
13 Renksizbulut M, Niazmand H, Tercan G. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. International Journal of Thermal Sciences , 2006, 45(9): 870–881
doi: 10.1016/j.ijthermalsci.2005.12.008
14 Tunc G, Bayazitoglu Y. Heat transfer in microtubes with viscous dissipation. International Journal of Heat and Mass Transfer , 2001, 44(13): 2395–2403
doi: 10.1016/S0017-9310(00)00298-2
15 Aydin O, Avci M. Analysis of laminar heat transfer in micro-Poiseuille flow. International Journal of Thermal Sciences , 2007, 46(1): 30–37
doi: 10.1016/j.ijthermalsci.2006.04.003
16 Guo Z Y, Wu X B. Compressibility effect on the gas flow and heat transfer in a microtube. International Journal of Heat and Mass Transfer , 1997, 40(13): 3251–3254
doi: 10.1016/S0017-9310(96)00323-7
17 Beskok A. Simulations and Models for Gas Flows in Microgeometries. New Jersey: Prineeton University, 1996
18 Chen C S. Numerical analysis of heat transfer for steady three-dimensional compressible flow in long microchannels. Journal of Enhanced Heat Transfer , 2005, 12(2): 171–188
doi: 10.1615/JEnhHeatTransf.v12.i2.30
19 Burnett D. The distribution of velocities and mean motion in a slight nonuniform gas. In: Proceedings of the London Mathematical Society , 1935, 39: 385–430
doi: 10.1112/plms/s2-39.1.385
20 Bao F B, Lin J Z. Linear stability analysis for various forms of one-dimensional burnett equations. International Journal of Nonlinear Sciences and Numerical Simulation , 2005, 6(3): 295–303
21 Zhong X L, Maccormack R W, Chapman D R. Stabilization of the Burnett equations and application to hypersonic flows. AIAA Journal , 1993, 31(6): 1036–1043
doi: 10.2514/3.11726
22 Balakrishnan R. An approach to entropy consistency in second-order hydrodynamic equations. Journal of Fluid Mechanics , 2004, 503: 201–245
doi: 10.1017/S0022112004007876
23 Colin S, Lalonde P, Caen R. Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Engineering , 2004, 25(3): 23–30
doi: 10.1080/01457630490280047
24 Deissler R G. An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases. International Journal of Heat and Mass Transfer , 1964, 7: 681–694
doi: 10.1016/0017-9310(64)90161-9
25 Xue H, Ji H M, Shu C. Prediction of flow and heat transfer characteristics in micro-Couette flow. Microscale Thermophysical Engineering , 2003, 7(1): 51–68
doi: 10.1080/10893950390150430
26 Nanbu K. Analysis of the Couette flow by means of the new direct-simulation method. Journal of the Physical Society of Japan , 1983, 5: 1602–1608
doi: 10.1143/JPSJ.52.1602
27 Pong K C, Ho C M, Liu J Q, Tai Y C. Non-linear pressure distribution in uniform micro-channels. Applications of Micro- fabrication to fluid Mechanics ASME FED , 1994, 197: 51–56
28 Shih J C, Ho C M, Liu J Q, Tai Y C. Monatomic and polyatomic gas flow through uniform microchannels. ASME MEMS DSC , 1996, 59: 197–203
[1] Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUéS, Günter FORSTER. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying[J]. Front Mech Eng, 2011, 6(3): 324-331.
[2] Bingfeng JIAO, Desheng LI, Yunkang SUI, Lezhi YE. Structure optimization for magnetic equipment of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 442-445.
[3] Zhaomiao LIU, Huamin LIU, Xin LIU, . Dynamical analysis of droplet impact spreading on solid substrate[J]. Front. Mech. Eng., 2010, 5(3): 308-315.
[4] Zhiyi YU, Guoyu WANG, Shuliang CAO. Extended two-fluid model applied to analysis of bubbly flow in multiphase rotodynamic pump impeller[J]. Front Mech Eng Chin, 2009, 4(1): 53-59.
[5] SHANG Tao, ZHAO Dingxuan, ZHANG Yuankun, GUO Xiangen, SHI Xiangzhong. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter[J]. Front. Mech. Eng., 2008, 3(1): 86-90.
[6] JI Weihong, SONG Yupu, LIANG Bing. Numeric simulation for structure’s damage identification of space truss[J]. Front. Mech. Eng., 2007, 2(4): 423-428.
[7] HE Cunfu, HANG Lijun, WU Bin. Design of a piezoelectric transducer cylindrical phase modulator for simulating acoustic emission signals[J]. Front. Mech. Eng., 2007, 2(3): 370-373.
[8] HU Guo-liang, XU Bing, YANG Hua-yong, ZHANG Yi-ding. Design and Experimental Research on a New Pipe Rupture Valve[J]. Front. Mech. Eng., 2006, 1(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed