Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2010, Vol. 5 Issue (4) : 442-445    https://doi.org/10.1007/s11465-010-0112-z
RESEARCH ARTICLE
Structure optimization for magnetic equipment of permanent magnet retarder
Bingfeng JIAO1, Desheng LI1, Yunkang SUI2(), Lezhi YE1
1. Mechanical & Electronic Technology Research Center, Beijing University of Technology, Beijing 100124, China; 2. Center for Engineering, Beijing University of Technology, Beijing 100124, China
 Download: PDF(299 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main purpose of this research is to perform a magnetic analysis on the magnetic equipment of permanent magnet retarder (PMR) and optimize the structure of magnetic equipment with the commercial FEM software ANSYS and its design optimization module. The FEM model is built as an axisymmetric model according to the characteristics of the structure of magnetic equipment. Using this model, the magnetic field distribution and magnetic force are calculated by ANSYS. The mathematical model of structure optimization is also built. The design variables are structural parameters including the dimensions of permanent magnets and magnetic yoke, and the objective function is the magnetic force. The unconstrained optimization model takes the maximum value of magnetic force as the objective. A first-order optimization method is used to determine the optimum design of this problem. The optimization process works entirely with the ANSYS parametric design language (APDL). The design tools are used to understand design space and the behavior of the dependent variables. It is shown that designing a structure with the ANSYS optimization module and its design tools is an effective means to improve the structure.

Keywords optimization      ANSYS      permanent magnet retarder      numerical simulation     
Corresponding Author(s): SUI Yunkang,Email:ysui@bjut.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Desheng LI,Yunkang SUI,Lezhi YE, et al. Structure optimization for magnetic equipment of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 442-445.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0112-z
https://academic.hep.com.cn/fme/EN/Y2010/V5/I4/442
Fig.1  Disk-type PMR structure
Fig.2  1—rotor; 2—magnetic yoke; 3—permanent magnet; 4—short-circuit ring; 5—shell yoke; 6—stator
Structure of magnetic equipment
Fig.3  Geometric model of magnetic equipment
parametersvalue/mm
w070
h070
a1.5
hz10
hFe5
w40
h25
eh5
ew5
Tab.1  Initial value of design parameters
Fig.4  Finite element model
Fig.5  Distribution of flux lines of preliminary model
parametersset 1set 2set 3
hFe/mm5.00005.00005.0000
w/mm40.00050.00050.000
h/mm25.00027.31128.206
eh/mm5.00009.94709.4632
ew/mm5.00005.76865.9625
fobj/N7235.45100.75075.8
feasibilityfeasiblefeasiblefeasible
Tab.2  Optimization sets
Fig.6  Distribution of flux lines for optimized model
Fig.7  – curve
Fig.8  –curve
optimization variablespreliminary designoptimized design
hFe/mm55
w/mm4050
h/mm2528.206
eh/mm59.4632
ew/mm55.9625
objective function fobj/N7235.45075.8
magnetic force fy/N-2764.6-4924.2
Tab.3  Comparison between preliminary design and optimized design
1 Gay S E, Ehsani M. Analysis and experimental testing of a permanent magnet eddy-current brake. In: 2005 IEEE Vehicle Power and Propulsion Conference . Chicago, IL, the United States: IEEE, 2005, 756–765
2 Zhao X B, Zhou J, Ji C Y. Research actuality and prospect of permanent magnet type of retarder in automobile. Tractor & Farm Transporter , 2007, 34(5): 6–8 (in Chinese)
3 Kuwahara T. U SPatent, US5023499, 1991-01-11
4 Kuwahara T. U SPatent, US5143183, 1992-09-01
5 Kuwahara T. U SPatent, US5145038, 1992-09-08
6 Kuwahara T, Ogawa M, Kuwabara T. European Patent, EP1638194, 2006-03-22
7 Ye L Z, Sheng L D, Yuan L Z. Study on a novel permanent magnet retarder for vehicles. In: Kong J A, ed. Progress in Electromagnetics Research Symposium . Hangzhou: Electromagnetics ACAD, 2008, 531–535
8 Wen W X, Jian Y Z, Lei D. About some optimization design problems of ANSYS. Journal of Plasticity Engineering , 2007, 14(6): 181–184 (in Chinese)
[1] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[2] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[3] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[4] Zhen-Pei WANG, Zhifeng XIE, Leong Hien POH. An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis[J]. Front. Mech. Eng., 2020, 15(2): 279-293.
[5] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[6] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[7] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[8] Hong PENG, Han WANG, Daojia CHEN. Optimization of remanufacturing process routes oriented toward eco-efficiency[J]. Front. Mech. Eng., 2019, 14(4): 422-433.
[9] Weichang KONG, Fei QIAO, Qidi WU. A naive optimization method for multi-line systems with alternative machines[J]. Front. Mech. Eng., 2019, 14(4): 377-392.
[10] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[11] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[12] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[13] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[14] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
[15] Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE. A regularization scheme for explicit level-set XFEM topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 153-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed