Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2011, Vol. 6 Issue (1) : 118-135    https://doi.org/10.1007/s11465-011-0127-0
RESEARCH ARTICLE
Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions
Xiancheng ZHANG1,2(), Fuzhen XUAN1, Shantung TU1, Binshi XU2, Yixiong WU2
1. Key Laboratory of Safety Science of Pressurized System, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; 2. Shanghai Key Lab of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200030, China
 Download: PDF(1980 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this paper was to address the rolling contact fatigue (RCF) failure mechanisms of plasma-sprayed Cr3C2-NiCr coatings under different tribological conditions of contact stress. Weibull distribution plots of fatigue lives of the coated specimens at different contact stresses were obtained. The failure modes of coatings were identified on the basis of wore surface observations of the failed coatings. Results showed that the RCF failure modes can be classified into four main categories, i.e., surface abrasion, spalling, cohesive delamination, and interfacial delamination. The probabilities of the surface abrasion and spalling type failures were relatively high at low contact stress. When the coatings were subjected to abrasion and spalling type failures, the failure of the coating was depended on the microstrcture of the coating. The stress concentration near the micro-defects in the coating may be the may reason for the formation of spall. The coatings were prone to fail in delamination under higher contact stresses. However, the delamination of coating may be related to distribution of shear stress amplitude within coating. The location of maximum shear stress amplitude can be used as a key parameter to predict the initiation of subsurface cracks within coating in rolling contact.

Keywords rolling contact fatigue      coating      Weibull distribution      failure mode      mechanism     
Corresponding Author(s): ZHANG Xiancheng,Email:xczhang@ecust.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Xiancheng ZHANG,Fuzhen XUAN,Shantung TU, et al. Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions[J]. Front Mech Eng, 2011, 6(1): 118-135.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0127-0
https://academic.hep.com.cn/fme/EN/Y2011/V6/I1/118
ProcessCoating materialsThickness/μmHardness/HVContact stress/MPaRCF lifeRef.
HVOFWC-12%Co,WC-17%Co, WC-10%Co-4%Cr100758–1208420, 510, 62010 million cycles[1]
WC-12%Co50–22512962700–37000.05–68.5 million cycles[7]
WC-20%Cr-7%Ni39–95703–9641000–14000.07–20 million cycles[8]
WC-Co50,1509402400–30001–328 min[9]
WC-12%Co20,150,25013181700–190018–7260 min[10]
WC-20%Cr-7%Ni50–113744–817600, 800,14000.025–20 million cycles[11]
APSWC-12%Co100888420, 510, 62010 million cycles[1]
WC-15%Co501200N/A10–350 min[4]
WC-15%Co60–26011582740, 31000.058–38.61 million cycles[12]
Cr3C2-25%NiCr50,100,210438–6221300,1500, 20340.01–8.775 million cycles[13]
WC-15%Co60–260N/A2740, 31006–4290 min[14]
Ni-Cr-B-Si-C200.45N/A15003–6 million cycles[15]
WC-15%Co, Al2O3701200580010–180 min[16]
Al2O3, TiO2, Mo, Cr2O3-SiO2-TiO2300–350491–1089822–1086<10 million cycles[17]
D-GunWC-15%Co501200N/A10–350 min[4]
Cr3C2-25%NiCr50,100,2108891300, 20340.094–3.642 million cycles[13]
WC-15%Co, Al2O3701200580010–180 min[16]
Tab.1  Published findings for RCF performance of thermally sprayed coatings
Argon gas flow rate60 L/min
Hydrogen gas flow rate3.33 L/min
Nitrogen gas flow rate10 L/min
Spraying voltage140 V
Spraying current360 A
Powder feed rate30 g/min
Tab.2  Parameters used for plasma spraying
Fig.1  Morphology of CrC-NiCr powder
Fig.2  1—temperature sensor; 2—spindle driving motor; 3—belt drive; 4—speed sensor; 5—follower pulley; 6—stand; 7—weight; 8—cup assembly; 9—vibration sensor; 10—loading lever; 11—gear as a collet; 12—coated specimen; 13—bearing with 11 balls
Schematic of the rolling contact test machine
Fig.3  Finite-element meshes used for shear stress distributions within coating and substrate
Fig.4  Weibull plots of rolling contact fatigue lives of coatings tested at different contact stresses
Contact stress (GPa)Modulus, β N10 (×106 cycles)N50 (×106 cycles)Na(×106 cycles)N90 (×106 cycles)Na 90% Confidence band (×106 cycles)Na 95% Confidence band (-106 cycles)
LowerHigherLowerHigher
1.5072.110.75761.84752.19733.26061.84022.62381.75002.7591
1.8981.670.44921.38411.72292.83551.37572.15771.29072.2998
2.3912.100.33670.92241.2221.75330.91871.37080.86811.4508
12.66
2.8821.980.15480.40820.49290.75710.40700.59690.38550.6301
6.48
Tab.3  Life parameters at different contact stresses and slops of Weibull plots
Fig.5  S-N curves for CrC-NiCr coatings
Fig.6  Cross-sectional microstructure of plasma sprayed CrC-NiCr coating
CodeRCF life (cycles)Failure modeCodeRCF life (cycles)Failure mode
A10.458×106ID1B10.372×106ID
A20.733×106DWC2B20.642×106DWC
A31.192×106DWCB30.733×106SP
A41.283×106DWCB40.789×106DWC
A51.375×106DWCB50.825×106SP
A61.467×106DWCB61.008×106ID
A71.925×106SA3B71.162×106SP
A82.108×106DWCB81.283×106SP
A92.292×106SP4B91.833×106SP
A102.383×106SAB102.118×106DWC
A112.750×106SPB112.292×106SP
A123.208×106DWCB123.232×106SP
A134.075×106SAB133.575×106SP
Tab.4  Detailed results from worn surface observations of failed coatings tested at contact stresses of 1.507 GPa (A1–A13) and 1.898 GPa (B1–B13)
Fig.7  Surface observations of failed coating A6 tested at contact stress of 1.507?GPa. (a) Overall view of wear track; (b) delamination in SEI; (c) delamination in BEI; (d) higher-magnification at edge
Fig.8  Surface observations of failed coating A7 tested at contact stress of 1.507 GPa. (a) Overall view of the wear track; (b) higher magnification
Fig.9  Spall on worn surface of failed coating with fatigue life of 2.292 × 10 cycles at contact stress of 1.898 GPa. (a) Overall view; (b) breakage of lamellar structures at bottom surface of spall
Fig.10  Overall view of spall on worn surface of failed coating with fatigue life of 3.232 × 10 cycles at contact stress of 1.898?GPa
Fig.11  Surface observations of failed coating B2 with fatigue life of 0.642 × 10at contact stress of 1.898 GPa. (a) Overview of wear track; (b) delamination area in BEI
Fig.12  Surface observations of failed coating B4 with fatigue life of 0.789 × 10at contact stress of 1.898 GPa, overview of delamination area. (a) SEI; (b) BEI
CodeRCF life (cycles)Failure modeCodeRCF life (cycles)Failure mode
C10.245×106IDD10.082×106ID
C20.276×106IDD20.092×106ID
C30.367×106IDD30.183×106ID
C40.463×106DWCD40.217×106ID
C50.668×106IDD50.367×106DWC
C60.733×106IDD60.382×106ID
C70.917×106SPD70.495×106SP
C81.192×106IDD80.513×106ID
C91.451×106DWCD90.550×106SP
C101.515×106SPD100.629×106SP
C111.623×106SPD110.660×106SP
C121.650×106SPD120.733×106SP
C131.833×106SPD130.798×106SP
Tab.5  Detailed results from worn surface observations of failed coatings tested at contact stresses of 2.391 GPa (C1–C13) and 2.882 GPa (D1–D13)
Fig.13  Interfacial delamination on surface of failed specimen with life of 0.917 × 10 cycles at =2.391 GPa. (a) Overall view of the delamination; (b) cliff edge
Fig.14  Delamination on surface of failed specimen with life of 0.458 × 10 cycles at =2.391 GPa. (a) SEI; (b) BEI
Fig.15  Worn surface observations of failed specimen with life of 1.283 × 10 cycles at =2.391 GPa. (a) Overall view; (b) decohesion of splats
Fig.16  Worn surface observation of failed coating with fatigue life of 0.217 × 10 cycles at = 2.882 GPa. (a) Overall view; (b) cliff edge
Fig.17  Worn surface observation of failed coating with fatigue life of 0.367 × 10 cycles at =2.882 GPa. (a) Overall view; (b) delamination area
Fig.18  Distributions. (a) Orthogonal shear stress; (b) maximum shear stress; (c) shear stress amplitude, within coating and substrate with respect to different contact stresses
Fig.19  Number of coatings failed in individual modes at individual contact stresses
Fig.20  Schematically showing formation of spall at coating surface
1 Nieminen R, Vuoristo P, Niemi K, M?ntyl? T, Barbezat G. Rolling contact fatigue failure mechanisms in plasma and HVOF sprayed WC-Co coatings. Wear , 1997, 212(1): 66–77
doi: 10.1016/S0043-1648(97)00138-5
2 Miller G R, Keer L M, Cheng H S. On the mechanics of fatigue crack growth due to contact loading. P Roy Soc Lond: Mat , 1813, 1985(397): 197–209
3 Rosado L, Jain V K, Trived H K. The effect of diamond-like carbon coatings on the rolling fatigue and wear of M50 steel. Wear , 1997, 212(1): 1–6
doi: 10.1016/S0043-1648(97)00147-6
4 Ahmed R, Hadfield M. Rolling contact fatigue behaviour of thermally sprayed rolling elements. Surface and Coatings Technology , 1996, 82(1–2): 176–186
doi: 10.1016/0257-8972(95)02736-X
5 Stewart S, Ahmed R. Contact fatigue failure modes in hot isostatically pressed WC-12%Co coatings. Surface and Coatings Technology , 2003, 172(2–3): 204–216
doi: 10.1016/S0257-8972(03)00390-6
6 Makela A, Vuroisto P, Lahdensuo M, Niemi K, Mantyla T. Rolling contact fatigue testing of thermally sprayed coatings. International Journal of Fatigue , 1995, 17: 305
7 Ahmed R. Contact fatigue failure modes of HVOF coatings. Wear , 2003, 253(3–4): 473–487
8 Nakajima A, Mawatari T, Yoshida M, Tani K, Nakahira A. Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling/sliding contact. Wear , 2000, 241(2): 166–173
doi: 10.1016/S0043-1648(00)00371-9
9 Ahmed R, Hadfield M. Experimental measurement of the residual stress field within thermally sprayed rolling elements. Wear , 1997, 209(1–2): 84–95
doi: 10.1016/S0043-1648(97)00009-4
10 Ahmed R, Hadfield M. Wear of high-velocity oxy-fuel (HVOF)-coated cones in rolling contact. Wear , 1997, 203–204: 98–106
doi: 10.1016/S0043-1648(96)07349-8
11 Nuruzzaman D M, Nakajima A, Mawatari T. Effects of substrate surface finish and substrate material on durability of thermally sprayed WC cermet coating in rolling with sliding contact. Tribology International , 2006, 39(7): 678–685
doi: 10.1016/j.triboint.2005.06.003
12 Ahmed R, Hadfield M. Failure modes of plasma sprayed WC-15%Co coated rolling elements. Wear , 1999, 230(1): 39–55
doi: 10.1016/S0043-1648(99)00083-6
13 Shen X Y, Yu S Y. Performance in resistance to surface fatigue for Cr3C2-25%NiCr coatings by plasma spray and CDS spray. Tribology Letters , 2004, 16(3): 173–180
doi: 10.1023/B:TRIL.0000009727.91545.49
14 Ahmed R, Hadfield M. Rolling contact fatigue performance of plasma sprayed coatings. Wear , 1998, 220(1): 80–91
doi: 10.1016/S0043-1648(98)00224-5
15 Sarma B Y, Mayuram M M. Some studies on life prediction of thermal sprayed coatings under rolling contact conditions. ASME J Tribol , 2000, 122(3): 503–510
doi: 10.1115/1.555393
16 Ahmed R, Hadfield M. Rolling contact fatigue performance of detonation gun coated elements. Tribology International , 1997, 30(2): 129–137
doi: 10.1016/0301-679X(96)00036-9
17 Tobe S, Kodama S, Misawa H. Rolling contact behaviour of plasma sprayed coating on aluminium alloy. In: Proc Nat Thermal Spray Conf. Tokyo, Japan, ASM international, Anaheim, CA , 1990: 171–178
18 Berger L M, Vuoristo P, Mantyla T, Gruner W. Study of oxidation behavior of WC-Co, Cr3C2-NiCr and Tic-Ni-based materials in thermal spray processes. In: Coddet C, eds. Proceedings of the 15th International Thermal Spray Conference. Nice, France , 1998: 75–82
19 Hertz H. überdie Berührung fester elastischer K?rper. J Reine Angew Math , 1881, 92: 156–171
20 Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1992
21 Shimizu S. P-S-N/P-F-L curve approach using three-parameter Weibull distribution for life and fatigue analysis of structural and rolling contact components. Tribol Trans , 2005, 48(4): 576–582
doi: 10.1080/05698190500313536
22 Robert B A, Breneman J E, Medlin C H, Reinman G L. Weibull analysis handbook, US Air Force AFWAL-TR-83–2079, prepared for the Aero Propulsion and Power Laboratory, Wright-Patterson AFB, Ohio, 1983
23 Kuroda S, Clyne T W. Quenching stress in thermally sprayed coatings. Thin Solid Films , 1991, 200(1): 49–66
doi: 10.1016/0040-6090(91)90029-W
24 Kato K, Hokkirigawa K. Abrasive wear diagram. In: Proceedings of the Eurotrib’85. Amsterdam: Elsevier, 1985: 9–12
25 Holmberg K, Matthews A, Ronkainen H. Coatings tribology-contact mechanisms and surface design. Tribology International , 1998, 31(1–3): 107–120
doi: 10.1016/S0301-679X(98)00013-9
26 Tallian T. Failure Atlas for Hertz Contact Machine Elements. New York: ASME Press, 1992
27 Stewart S, Ahmed R, Itsukaichi T. Rolling contact fatigue of post-treated WC- NiCrBSi thermal spray coatings. Surface and Coatings Technology , 2005, 190(2–3): 171–189
doi: 10.1016/j.surfcoat.2004.04.059
28 Liang G Y, Su J Y. The microstructure and tribological characteristics of laser-clad Ni-Cr-Al coatings on aluminium alloy. Materials Science and Engineering , 2000, A290: 207–212
29 Miyashita Y, Yoshimura Y, Xu J Q, Horikoshi M, Mutoh Y. Subsurface crack propagation in rolling contact fatigue of sintered alloy. JSME International Journal , 2003, 46(3): 341–347
doi: 10.1299/jsmea.46.341
30 Lundberg G, Palmgren A. Dynamic capacity of rolling bearings. Acta Polytechnica-Mech. Eng Series , 1947, 1: 4–51
31 Fellows L, Nowell D, Hills D. On the initiation of fretting fatigue cracks. Wear , 1997, 205(1–2): 120–129
doi: 10.1016/S0043-1648(96)07302-4
[1] Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU. Damage propagation and strength prediction of a single-lap interference-fit laminate structure[J]. Front. Mech. Eng., 2020, 15(4): 558-570.
[2] Yanlin HAO, Yaobin TIAN, Jianxu WU, Yezhuo LI, Yan-An YAO. Design and locomotion analysis of two kinds of rolling expandable mobile linkages with a single degree of freedom[J]. Front. Mech. Eng., 2020, 15(3): 365-373.
[3] Jimu LIU, Yuan TIAN, Feng GAO. A novel six-legged walking machine tool for in-situ operations[J]. Front. Mech. Eng., 2020, 15(3): 351-364.
[4] Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG. Untethered quadrupedal hopping and bounding on a trampoline[J]. Front. Mech. Eng., 2020, 15(2): 181-192.
[5] Xiaodong JIN, Yuefa FANG, Dan ZHANG, Xueling LUO. Design and analysis of a class of redundant collaborative manipulators with 2D large rotational angles[J]. Front. Mech. Eng., 2020, 15(1): 66-80.
[6] Pan JIA, Huaiju LIU, Caichao ZHU, Wei WU, Guocheng LU. Contact fatigue life prediction of a bevel gear under spectrum loading[J]. Front. Mech. Eng., 2020, 15(1): 123-132.
[7] Xuemin SUN, Yan-An YAO, Ruiming LI. Novel method of constructing generalized Hoberman sphere mechanisms based on deployment axes[J]. Front. Mech. Eng., 2020, 15(1): 89-99.
[8] Jiali ZHAO, Shitong PENG, Tao LI, Shengping LV, Mengyun LI, Hongchao ZHANG. Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level[J]. Front. Mech. Eng., 2019, 14(4): 474-488.
[9] Le WANG, Yuelan DI, Ying LIU, Haidou WANG, Haoxing YOU, Tao LIU. Effect of TGO on the tensile failure behavior of thermal barrier coatings[J]. Front. Mech. Eng., 2019, 14(4): 452-460.
[10] Yun-Shuai SU, Shu-Rong YU, Shu-Xin LI, Yan-Ni HE. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue[J]. Front. Mech. Eng., 2019, 14(4): 434-441.
[11] Haiyang LU, Yanle LI, Fangyi LI, Xingyi ZHANG, Chuanwei ZHANG, Jiyu DU, Zhen LI, Xueju RAN, Jianfeng LI, Weiqiang WANG. Damage mechanism and evaluation model of compressor impeller remanufacturing blanks: A review[J]. Front. Mech. Eng., 2019, 14(4): 402-411.
[12] Arun KRISHNAN, Fengzhou FANG. Review on mechanism and process of surface polishing using lasers[J]. Front. Mech. Eng., 2019, 14(3): 299-319.
[13] Shuncong ZHONG. Progress in terahertz nondestructive testing: A review[J]. Front. Mech. Eng., 2019, 14(3): 273-281.
[14] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[15] B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review[J]. Front. Mech. Eng., 2019, 14(1): 113-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed