Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 237-240    https://doi.org/10.1007/s12200-008-0076-3
Research Article
Laser detection by electronic instead of optical heterodyne using a two-frequency laser
Lei LI1(), Changming ZHAO2, Suhui YANG2
1. Shanghai Institute of Optics and Fine Mechanics; 2. School of Information Science and Technology, Beijing Institute of Technology
 Download: PDF(116 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A laser ranging system using a two-frequency laser is demonstrated, and the lidar-radar concept is introduced. A laser beam carrying 100 MHz radio frequency is obtained by a monolithic nonplanar ring single-frequency oscillator and an acousto-optical modulator, which is used as the light source of the two-frequency detecting experimental setup. With the optical transmitting and collecting system, the displacement information of a target mounted on a motorized translation stage is achieved. In signal processing, the displacement is obtained by calculating the phase difference between the reference and detection signals executed by a radio-frequency lock-in amplifier. The ranging system turns the optical heterodyne into an electronic demodulation, and the repetition error is less than 3%. The system takes advantage of the signal processing technologies of radar, and meanwhile maintains the advantages of laser detection.

Keywords lidar-radar      two-frequency laser      beat frequency      heterodyne     
Corresponding Author(s): LI Lei,Email:lilei@siom.ac.cn   
Issue Date: 05 September 2009
 Cite this article:   
Lei LI,Changming ZHAO,Suhui YANG. Laser detection by electronic instead of optical heterodyne using a two-frequency laser[J]. Front Optoelec Chin, 2008, 1(3-4): 237-240.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0076-3
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/237
Fig0  Experimental setup of displacement detection(HWP – half-wave plate; PBS – polarized beam splitter; QWP – quarter-wave plate)
1 JelalianA V. Laser Radar Systems. Boston: Artech House Publishers, 1992, 1–6
2 SkolnikM I. Radar Handbook. 2nd ed .New York: MacGraw-Hill, 1990, 1–4
3 MorvanL, LaiN D, DolfiD, . Building blocks for a two-frequency laser lidar-radar: a preliminary study. Applied Optics , 2002, 41(27): 5702–5712
doi: 10.1364/AO.41.005702
4 MullenL J, VieiraA J C, HerezfeldP R, . Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection. IEEE Transactions on Microwave Theory and Techniques , 1995, 43(9): 2370–2377
doi: 10.1109/22.414591
5 PellenF, OlivardP, GuernY, . Radio frequency modulation on an optical carrier for target detection enhancement in sea-water. Journal of Physics D: Applied Physics , 2001, 34(7): 1122–1130
doi: 10.1088/0022-3727/34/7/315
6 RaymondT D, SmithA V. Two-frequency injection-seeded Nd:YAG laser. IEEE Journal of Quantum Electronics , 1995, 31(10): 1734–1737
doi: 10.1109/3.466046
7 BrunelM, BretenakerF, Le FlochA. Tunable optical microwave source using spatially resolved laser eigenstates. Optics Letters , 1997, 22(6): 384–386
doi: 10.1364/OL.22.000384
8 ZhouZ F, ZhangT, ZhouW D, . Profilometer for measuring superfine surfaces. Optical Engineering , 2001, 40(8): 1646–1652
doi: 10.1117/1.1387994
9 WuK Y, WeiG H, ZhaoC M, . Design of diode pumped unidirectional nonplanar single-frequency ring laser. Acta Optica Sinica , 2000, 20(9): 1245–1250 (in Chinese)
10 AlouiniM, BenazetB, ValletM, . Offset phase locking of Er:Yb:Glass laser eigenstates for RF photonics applications. IEEE Photonics Technology Letters , 2001, 13(4): 367–369
doi: 10.1109/68.917855
11 Tonda-GoldsteinS, DolfiD, MonsterleetA, . Optical signal processing in radar systems. IEEE Transactions on Microwave Theory and Techniques , 2006, 54(2): 847–853
doi: 10.1109/TMTT.2005.863059
12 ValletM, BrunelM, OgerM. RF photonic synthesiser. Electronics Letters , 2007, 43(25): 1437–1438
doi: 10.1049/el:20072628
13 ShiehW, MalekiL. Phase noise characterization by carrier suppression techniques in RF photonic systems. IEEE Photonics Technology Letters , 2005, 17(2): 474–476
doi: 10.1109/LPT.2004.839781
14 BrunelM, AmonA, ValletM. Dual-polarization microchip laser at 1.53 μm. Optics Letters , 2005, 30(18): 2418–2420
doi: 10.1364/OL.30.002418
15 EberhardW L, SchotlandR M. Dual-frequency Doppler-lidar method of wind measurement. Applied Optics , 1980, 19(17): 2967–2976
doi: 10.1364/AO.19.002967
16 KaoD C, KaneT J, MullenL J. Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tenability up to 60 GHz by dual seed injection. Optics Letters , 2004, 29(11): 1203–1205
doi: 10.1364/OL.29.001203
17 DiazR, ChanS C, LiuJ M. Lidar detection using a dual-frequency source. Optics Letters , 2006, 31(24): 3600–3602
doi: 10.1364/OL.31.003600
18 LiY F, VieiraA J C, GoldwasserS M, . Rapidly tunable millimeter-wave optical transmitter for lidar-radar. IEEE Transactions on Microwave Theory and Techniques , 2001, 49(10): 2048–2054
doi: 10.1109/22.954829
19 MullenL, LauxA, ConcannonB, . Amplitude modulated laser imager. Applied Optics , 2004, 43(19): 3874–3892
doi: 10.1364/AO.43.003874
20 MullenL, LauxA, CochenourB, . Demodulation techniques for the amplitude modulated laser imager. Applied Optics , 2007, 46(30): 7374–7383
doi: 10.1364/AO.46.007374
[1] Saeed OLYAEE, Zahra DASHTBAN, Muhammad Hussein DASHTBAN. Design and implementation of super-heterodyne nano-metrology circuits[J]. Front Optoelec, 2013, 6(3): 318-326.
[2] Yunshan ZHANG, Chunqing GAO, Mingwei GAO, Yan ZHENG, Lei WANG, Ran WANG. A speed measurement system utilizing an injection-seeded Tm:YAG laser[J]. Front Optoelec Chin, 2011, 4(4): 411-414.
[3] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed