|
|
Laser detection by electronic instead of optical heterodyne using a two-frequency laser |
Lei LI1( ), Changming ZHAO2, Suhui YANG2 |
1. Shanghai Institute of Optics and Fine Mechanics; 2. School of Information Science and Technology, Beijing Institute of Technology |
|
|
Abstract A laser ranging system using a two-frequency laser is demonstrated, and the lidar-radar concept is introduced. A laser beam carrying 100 MHz radio frequency is obtained by a monolithic nonplanar ring single-frequency oscillator and an acousto-optical modulator, which is used as the light source of the two-frequency detecting experimental setup. With the optical transmitting and collecting system, the displacement information of a target mounted on a motorized translation stage is achieved. In signal processing, the displacement is obtained by calculating the phase difference between the reference and detection signals executed by a radio-frequency lock-in amplifier. The ranging system turns the optical heterodyne into an electronic demodulation, and the repetition error is less than 3%. The system takes advantage of the signal processing technologies of radar, and meanwhile maintains the advantages of laser detection.
|
Keywords
lidar-radar
two-frequency laser
beat frequency
heterodyne
|
Corresponding Author(s):
LI Lei,Email:lilei@siom.ac.cn
|
Issue Date: 05 September 2009
|
|
1 |
JelalianA V. Laser Radar Systems. Boston: Artech House Publishers, 1992, 1–6
|
2 |
SkolnikM I. Radar Handbook. 2nd ed .New York: MacGraw-Hill, 1990, 1–4
|
3 |
MorvanL, LaiN D, DolfiD, . Building blocks for a two-frequency laser lidar-radar: a preliminary study. Applied Optics , 2002, 41(27): 5702–5712 doi: 10.1364/AO.41.005702
|
4 |
MullenL J, VieiraA J C, HerezfeldP R, . Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection. IEEE Transactions on Microwave Theory and Techniques , 1995, 43(9): 2370–2377 doi: 10.1109/22.414591
|
5 |
PellenF, OlivardP, GuernY, . Radio frequency modulation on an optical carrier for target detection enhancement in sea-water. Journal of Physics D: Applied Physics , 2001, 34(7): 1122–1130 doi: 10.1088/0022-3727/34/7/315
|
6 |
RaymondT D, SmithA V. Two-frequency injection-seeded Nd:YAG laser. IEEE Journal of Quantum Electronics , 1995, 31(10): 1734–1737 doi: 10.1109/3.466046
|
7 |
BrunelM, BretenakerF, Le FlochA. Tunable optical microwave source using spatially resolved laser eigenstates. Optics Letters , 1997, 22(6): 384–386 doi: 10.1364/OL.22.000384
|
8 |
ZhouZ F, ZhangT, ZhouW D, . Profilometer for measuring superfine surfaces. Optical Engineering , 2001, 40(8): 1646–1652 doi: 10.1117/1.1387994
|
9 |
WuK Y, WeiG H, ZhaoC M, . Design of diode pumped unidirectional nonplanar single-frequency ring laser. Acta Optica Sinica , 2000, 20(9): 1245–1250 (in Chinese)
|
10 |
AlouiniM, BenazetB, ValletM, . Offset phase locking of Er:Yb:Glass laser eigenstates for RF photonics applications. IEEE Photonics Technology Letters , 2001, 13(4): 367–369 doi: 10.1109/68.917855
|
11 |
Tonda-GoldsteinS, DolfiD, MonsterleetA, . Optical signal processing in radar systems. IEEE Transactions on Microwave Theory and Techniques , 2006, 54(2): 847–853 doi: 10.1109/TMTT.2005.863059
|
12 |
ValletM, BrunelM, OgerM. RF photonic synthesiser. Electronics Letters , 2007, 43(25): 1437–1438 doi: 10.1049/el:20072628
|
13 |
ShiehW, MalekiL. Phase noise characterization by carrier suppression techniques in RF photonic systems. IEEE Photonics Technology Letters , 2005, 17(2): 474–476 doi: 10.1109/LPT.2004.839781
|
14 |
BrunelM, AmonA, ValletM. Dual-polarization microchip laser at 1.53 μm. Optics Letters , 2005, 30(18): 2418–2420 doi: 10.1364/OL.30.002418
|
15 |
EberhardW L, SchotlandR M. Dual-frequency Doppler-lidar method of wind measurement. Applied Optics , 1980, 19(17): 2967–2976 doi: 10.1364/AO.19.002967
|
16 |
KaoD C, KaneT J, MullenL J. Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tenability up to 60 GHz by dual seed injection. Optics Letters , 2004, 29(11): 1203–1205 doi: 10.1364/OL.29.001203
|
17 |
DiazR, ChanS C, LiuJ M. Lidar detection using a dual-frequency source. Optics Letters , 2006, 31(24): 3600–3602 doi: 10.1364/OL.31.003600
|
18 |
LiY F, VieiraA J C, GoldwasserS M, . Rapidly tunable millimeter-wave optical transmitter for lidar-radar. IEEE Transactions on Microwave Theory and Techniques , 2001, 49(10): 2048–2054 doi: 10.1109/22.954829
|
19 |
MullenL, LauxA, ConcannonB, . Amplitude modulated laser imager. Applied Optics , 2004, 43(19): 3874–3892 doi: 10.1364/AO.43.003874
|
20 |
MullenL, LauxA, CochenourB, . Demodulation techniques for the amplitude modulated laser imager. Applied Optics , 2007, 46(30): 7374–7383 doi: 10.1364/AO.46.007374
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|