Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (2) : 170-177    https://doi.org/10.1007/s12200-009-0022-z
RESEARCH ARTICLE
Photonic crystal fiber with novel dispersion properties
Shuqin LOU1(), Shujie LOU2, Tieying GUO1, Liwen WANG1, Weiguo CHEN1, Honglei LI1, Shuisheng JIAN1
1. Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China; 2. Shandong Weifang Huaguang Precision Machinery Co., Weifang 261031, China
 Download: PDF(277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Our recent research on designing microstructured fiber with novel dispersion properties is reported in this paper. Two kinds of photonic crystal fibers (PCFs) are introduced first. One is the highly nonlinear PCF with broadband nearly zero flatten dispersion. With introducing the germanium-doped (Ge-doped) core into highly nonlinear PCF and optimizing the diameters of the first two inner rings of air holes, a new structure of highly nonlinear PCF was designed with the nonlinear coefficient up to 47 W-1·km-1 at the wavelength 1.55 μm and nearly zero flattened dispersion of ±0.5 ps/(km·nm) in telecommunication window (1460-1625 nm). Another is the highly negative PCF with a ring of fluorin-doped (F-doped) rods to form its outer ring core while pure silica rods to form its inner core. The peak dispersion -1064 ps/(km·nm) in 8 nm full width at half maximum (FWHM) wavelength range and -365 ps/(km·nm) in 20 nm (FWHM) wavelength range can be reached by adjusting the structure parameters. Then, our recent research on the fabrication of PCFs is reported. Effects of draw parameters such as drawing temperature, feed speed, and furnace temperature on the geometry of the final photonic crystal fiber are investigated.

Keywords photonic crystal fiber (PCF)      nearly zero flatten dispersion      high nonlinear      high negative dispersion      fabrication technique     
Corresponding Author(s): LOU Shuqin,Email:shqlou@bjtu.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Shuqin LOU,Shujie LOU,Tieying GUO, et al. Photonic crystal fiber with novel dispersion properties[J]. Front Optoelec Chin, 2009, 2(2): 170-177.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0022-z
https://academic.hep.com.cn/foe/EN/Y2009/V2/I2/170
Fig.1  Cross section of seven-ring triangular PCF considered
Fig.2  Dispersion of PCF with /L=/L=0.9 and L=1 mm at different /L
Fig.3  Dispersion of PCF with /L= 0.42, /L=0.9, and L=1 mm at different /L
Fig.4  Dispersion curves with various Ge doping concentration from 10 mol% to 14 mol% for highly nonlinear microstructured fiber with Λ =1 μm, /Λ=0.42, /Λ=0.86, and /Λ=0.9
Fig.5  Effective mode area (a) and nonlinear coefficient (b) of highly nonlinear PCF with/Λ=0.42, /Λ=0.86, /Λ=0.9, Λ=1 mm, and Ge-doped concentration =14 mol%
Fig.6  Cross section of proposed structure of DCPCF adopting 18 F-rods to form its outer ring core
Fig.7  Mode coupling process and dispersion curve of proposed DCPCF
Fig.8  Dispersion curves of proposed DCPCF with same pitch Λ=6 μm
Fig.9  Schematic diagram of drawing process of PCF
Fig.10  Curves of versus . (a) =1850°C, =15 m/min; (b) =1800°C, =2 mm/min; (c) =2 mm/min, =40 m/min
Fig.11  Two kinds of final geometry of PCF drawn from same preform with initial ratio of inner radius to outer radius 2/3. (a) /Λ=0.45; (b) /Λ=0.8
1 Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters , 1996, 21(19): 1547-1549
doi: 10.1364/OL.21.001547
2 Ferrando A, Silvestre E, Miret J, Andrés P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters , 2000, 25(11): 790-792
doi: 10.1364/OL.25.000790
3 Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express , 2002, 10(14): 609-613
4 Gér?me F, Auguste J L, Blondy J M. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber. Optics Letters , 2004, 29(23): 2725-2727
doi: 10.1364/OL.29.002725
5 Gander M J, McBride R, Jones J D C, Mogilevtsev D, Birks T A, Knight J C, Russell P. Experimental measurement of group velocity dispersion in photonic crystal fibre. IEEE Electronics Letters , 1999, 35(1): 63-64
doi: 10.1049/el:19990055
6 Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters , 2005, 17(1): 67-69
doi: 10.1109/LPT.2004.837475
7 Kunimasa S, Masanori K. Highly nonlinear dispersion-flattened photonic crystal fibers for super-continuum generation in a telecommunication window. Optics Express , 2004, 12(10): 2027-2032
doi: 10.1364/OPEX.12.002027
8 Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express , 2001, 9(13): 687-697
9 Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express , 2003, 11(8): 843-852
10 Yang S G, Zhang Y J, Peng X Z, Lu Y, Xie S Z. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express , 2006, 14(7): 3015-3023
doi: 10.1364/OE.14.003015
11 Ren G B, Lou S Q, Wang Z, Jian S S. Study on dispersion properties of photonic crystal fiber by effective-index model. Acta Optica Sinica , 2004, 24(3): 319-323 (in Chinese)
12 Boling N, Glass A, Owyoung A. Empirical relationships for predicting nonlinear refractive index changes in optical solids. IEEE Journal of Quantum Electronics , 1978, 14(8): 601-608
doi: 10.1109/JQE.1978.1069847
13 Hoo Y L, Jin W, Ju J, Ho H L, Wang D N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion. Optics Communication s, 2004, 242(4-6): 327-332
doi: 10.1016/j.optcom.2004.08.030
14 Linn F M. Nonlinear optics in fibers. Science , 2003, 302(5647): 996-997
doi: 10.1126/science.1091168
15 Nakajima K, Ohashi M. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers. IEEE Photonics Technology Letters , 2002, 14(4): 492-494
doi: 10.1109/68.992588
16 Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Poli F, Selleri S. Leakage losses in photonic crystal fibers. In: Proceedings of Optical Fiber Communication Conference , 2003,β2: 699-700
17 Lee S H K, Jaluria Y. The effects of variable viscosity and viscous dissipation on the flow and thermal transport during optical fiber drawing. In: Proceedings of 10th International Heat Transfer Conference , 1994, 7: 303-308
18 Lee S H K, Jaluria Y. The effects of geometry and temperature variations on the radiative transport during optical fiber drawing. Journal of Material Processing and Manufacturing Science , 1995, 3(4): 317-331
19 Myers M R. A model for unsteady analysis of preform drawing. Journal for the American Institute of Chemical Engineers , 1989, 35(4): 592-602
20 Falkenstein P, Merritt C D, Justus B L. Fused performs for the fabrication of photonic crystal fibers. Optics Letters , 2004, 29(16): 1858-1860
doi: 10.1364/OL.29.001858
[1] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[2] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[3] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[4] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[5] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
[6] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed