|
|
Bis-(8-hydroxyquinoline) copper nanoribbons: preparation, characterization, and photoconductivity |
Qi SHAO1,2, Tao WANG1, Xiuhua WANG2,3, Youcun CHEN1( ) |
1. Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China; 2. Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China; 3. Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract Bis-(8-hydroxyquinoline) copper nanoribbons with an average width of 400 nm, a thickness of 70 nm and the length of up to tens of micrometers, were synthesized by a facile solvothermal method. X-ray powder diffraction and Fourier transform infrared spectrum were employed to determine their structure. The photoconductivity of a bundle of nanoribbons was also measured, which exhibited unique photoresponse to light, indicating their potential applications in photoswitch nanodevices in the future.
|
Keywords
8-hydroxyquinoline
nanoribbons
photoswitches
|
Corresponding Author(s):
CHEN Youcun,Email:chenyc@aqtc.edu.cn
|
Issue Date: 05 June 2011
|
|
1 |
Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. Journal of the American Chemical Society , 2007, 129(12): 3527–3532 doi: 10.1021/ja0642109
|
2 |
An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society , 2004, 126(33): 10232–10233 doi: 10.1021/ja046215g
|
3 |
Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Nanotubes from isomeric dibenzoylmethane molecules. Chemistry , 2005, 11(12): 3773–3778
|
4 |
Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials , 2003, 15(5): 353–389
|
5 |
Zhang X J, Jie J S, Zhang W F, Zhang C Y, Luo L B, He Z B, Zhang X H, Zhang W J, Lee C S, Lee S T. Photoconductivity of a single small-molecule organic nanowire. Advanced Materials , 2008, 20(12): 2427–2432 doi: 10.1002/adma.200800351
|
6 |
Hu J S, Guo Y G, Liang H P, Wan L J, Jiang L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. Journal of the American Chemical Society , 2005, 127(48): 17090–17095 doi: 10.1021/ja0553912
|
7 |
Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Advanced Materials , 2008, 20(15): 2859–2876 doi: 10.1002/adma.200800604
|
8 |
Chiu J J, Kei C C, Perng T P, Wang W S. Organic semiconductor nanowires for field emission. Advanced Materials , 2003, 15(16): 1361–1364 doi: 10.1002/adma.200304918
|
9 |
Liu H B, Zhao Q, Li Y L, Liu Y, Lu F S, Zhuang J P, Wang S, Jiang L, Zhu D B, Yu D P, Chi L F. Field emission properties of large-area nanowires of organic charge-transfer complexes. Journal of the American Chemical Society , 2005, 127(4): 1120–1121 doi: 10.1021/ja0438359
|
10 |
Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters , 1987, 51(12): 913–915 doi: 10.1063/1.98799
|
11 |
Chiu J J, Wang W S, Kei C C, Perng T P. Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared by vapor condensation. Applied Physics Letters , 2003, 83(2): 347–349 doi: 10.1063/1.1591249
|
12 |
Hu J S, Ji H X, Cao A M, Huang Z X, Zhang Y, Wan L J, Xia A D, Yu D P, Meng X M, Lee S T. Facile solution synthesis of hexagonal AlQ3 nanorods and their field emission properties. Chemical Communications , 2007, (29): 3083–3085 doi: 10.1039/b704106c
|
13 |
Wang X H, Shao M W, Shao G, Wang S W. Tris(8-hydroxyquinoline) aluminum nanoribbons: facile solvothermal preparation and photoconductivity studies. Journal of Nanoscience and Nanotechnology , 2009, 9(8): 4709–4714 doi: 10.1166/jnn.2009.1105
|
14 |
Cho C P, Yu C Y, Perng T P. Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology , 2006, 17(21): 5506–5510 doi: 10.1088/0957-4484/17/21/035
|
15 |
Chen W, Peng Q, Li Y D. Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Crystal Growth & Design , 2008, 8(2): 564–567 doi: 10.1021/cg0706316
|
16 |
Pan H C, Liang F P, Mao C J, Zhu J J, Chen H Y. Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing. The Journal of Physical Chemistry B , 2007, 111(20): 5767–5772 doi: 10.1021/jp0703049
|
17 |
Wang X H, Shao M W, Liu L. High photoluminescence and photoswitch of bis(8-hydroxyquinoline) zinc nanoribbons. Synthetic Metals , 2010, 160(7–8): 718–721 doi: 10.1016/j.synthmet.2010.01.008
|
18 |
Fanning J C, Jonassen H B. The reaction of 8-quinolinol with copper(II) salts. Journal of Inorganic and Nuclear Chemistry , 1963, 25(1): 29–35 doi: 10.1016/0022-1902(63)80205-5
|
19 |
Tackett J E, Sawyer D T. Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorganic Chemistry , 1964, 3(5): 692–696 doi: 10.1021/ic50015a021
|
20 |
Tang Q X, Li H X, Liu Y L, Hu W P. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. Journal of the American Chemical Society , 2006, 128(45): 14634–14639 doi: 10.1021/ja064476f
|
21 |
Li Q H, Wan Q, Liang Y X, Wang T H. Electronic transport through individual ZnO nanowires. Applied Physics Letters , 2004, 84(22): 4556–4558 doi: 10.1063/1.1759071
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|