Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 195-198    https://doi.org/10.1007/s12200-011-0164-7
RESEARCH ARTICLE
Bis-(8-hydroxyquinoline) copper nanoribbons: preparation, characterization, and photoconductivity
Qi SHAO1,2, Tao WANG1, Xiuhua WANG2,3, Youcun CHEN1()
1. Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China; 2. Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China; 3. Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bis-(8-hydroxyquinoline) copper nanoribbons with an average width of 400 nm, a thickness of 70 nm and the length of up to tens of micrometers, were synthesized by a facile solvothermal method. X-ray powder diffraction and Fourier transform infrared spectrum were employed to determine their structure. The photoconductivity of a bundle of nanoribbons was also measured, which exhibited unique photoresponse to light, indicating their potential applications in photoswitch nanodevices in the future.

Keywords 8-hydroxyquinoline      nanoribbons      photoswitches     
Corresponding Author(s): CHEN Youcun,Email:chenyc@aqtc.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Qi SHAO,Tao WANG,Xiuhua WANG, et al. Bis-(8-hydroxyquinoline) copper nanoribbons: preparation, characterization, and photoconductivity[J]. Front Optoelec Chin, 2011, 4(2): 195-198.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0164-7
https://academic.hep.com.cn/foe/EN/Y2011/V4/I2/195
Fig.1  XRD pattern of products
Fig.1  XRD pattern of products
Fig.2  FTIR spectrum of products
Fig.2  FTIR spectrum of products
Fig.3  SEM images of products. (a) Low magnification; (b) high magnification
Fig.3  SEM images of products. (a) Low magnification; (b) high magnification
Fig.4  Photoresponse characteristics of a bundle of products during light switching on/off, and image of a bundle of products between two Au electrodes from optical microscope (inset)
Fig.4  Photoresponse characteristics of a bundle of products during light switching on/off, and image of a bundle of products between two Au electrodes from optical microscope (inset)
1 Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. Journal of the American Chemical Society , 2007, 129(12): 3527–3532
doi: 10.1021/ja0642109
2 An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society , 2004, 126(33): 10232–10233
doi: 10.1021/ja046215g
3 Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Nanotubes from isomeric dibenzoylmethane molecules. Chemistry , 2005, 11(12): 3773–3778
4 Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials , 2003, 15(5): 353–389
5 Zhang X J, Jie J S, Zhang W F, Zhang C Y, Luo L B, He Z B, Zhang X H, Zhang W J, Lee C S, Lee S T. Photoconductivity of a single small-molecule organic nanowire. Advanced Materials , 2008, 20(12): 2427–2432
doi: 10.1002/adma.200800351
6 Hu J S, Guo Y G, Liang H P, Wan L J, Jiang L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. Journal of the American Chemical Society , 2005, 127(48): 17090–17095
doi: 10.1021/ja0553912
7 Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Advanced Materials , 2008, 20(15): 2859–2876
doi: 10.1002/adma.200800604
8 Chiu J J, Kei C C, Perng T P, Wang W S. Organic semiconductor nanowires for field emission. Advanced Materials , 2003, 15(16): 1361–1364
doi: 10.1002/adma.200304918
9 Liu H B, Zhao Q, Li Y L, Liu Y, Lu F S, Zhuang J P, Wang S, Jiang L, Zhu D B, Yu D P, Chi L F. Field emission properties of large-area nanowires of organic charge-transfer complexes. Journal of the American Chemical Society , 2005, 127(4): 1120–1121
doi: 10.1021/ja0438359
10 Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters , 1987, 51(12): 913–915
doi: 10.1063/1.98799
11 Chiu J J, Wang W S, Kei C C, Perng T P. Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared by vapor condensation. Applied Physics Letters , 2003, 83(2): 347–349
doi: 10.1063/1.1591249
12 Hu J S, Ji H X, Cao A M, Huang Z X, Zhang Y, Wan L J, Xia A D, Yu D P, Meng X M, Lee S T. Facile solution synthesis of hexagonal AlQ3 nanorods and their field emission properties. Chemical Communications , 2007, (29): 3083–3085
doi: 10.1039/b704106c
13 Wang X H, Shao M W, Shao G, Wang S W. Tris(8-hydroxyquinoline) aluminum nanoribbons: facile solvothermal preparation and photoconductivity studies. Journal of Nanoscience and Nanotechnology , 2009, 9(8): 4709–4714
doi: 10.1166/jnn.2009.1105
14 Cho C P, Yu C Y, Perng T P. Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology , 2006, 17(21): 5506–5510
doi: 10.1088/0957-4484/17/21/035
15 Chen W, Peng Q, Li Y D. Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Crystal Growth & Design , 2008, 8(2): 564–567
doi: 10.1021/cg0706316
16 Pan H C, Liang F P, Mao C J, Zhu J J, Chen H Y. Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing. The Journal of Physical Chemistry B , 2007, 111(20): 5767–5772
doi: 10.1021/jp0703049
17 Wang X H, Shao M W, Liu L. High photoluminescence and photoswitch of bis(8-hydroxyquinoline) zinc nanoribbons. Synthetic Metals , 2010, 160(7–8): 718–721
doi: 10.1016/j.synthmet.2010.01.008
18 Fanning J C, Jonassen H B. The reaction of 8-quinolinol with copper(II) salts. Journal of Inorganic and Nuclear Chemistry , 1963, 25(1): 29–35
doi: 10.1016/0022-1902(63)80205-5
19 Tackett J E, Sawyer D T. Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorganic Chemistry , 1964, 3(5): 692–696
doi: 10.1021/ic50015a021
20 Tang Q X, Li H X, Liu Y L, Hu W P. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. Journal of the American Chemical Society , 2006, 128(45): 14634–14639
doi: 10.1021/ja064476f
21 Li Q H, Wan Q, Liang Y X, Wang T H. Electronic transport through individual ZnO nanowires. Applied Physics Letters , 2004, 84(22): 4556–4558
doi: 10.1063/1.1759071
[1] Li LIU, Ze ZHANG. Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 199-203.
[2] Chunyan WU, Li WANG, Zihan ZHANG, Xiwei ZHANG, Qiang PENG, Jiajun CAI, Yongqiang YU, Huier GUO, Jiansheng JIE. Synthesis and optoelectronic properties of silver-doped n-type CdS nanoribbons[J]. Front Optoelec Chin, 2011, 4(2): 161-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed