Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 87-92    https://doi.org/10.1007/s12200-011-0210-5
RESEARCH ARTICLE
Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells
Qianqian LI1, Wenjun WU2, Aoshu ZHONG1, Jianli HUA2, Ming PENG1, Jing HUANG1, Jie SHI1, He TIAN2, Jingui QIN1, Zhen LI1()
1. Department of Chemistry, Wuhan University, Wuhan 430072, China; 2. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, China
 Download: PDF(191 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new pyrrole-based conjugated oligomer (P1) was obtained with phenyl-linked triphenylamine moieties as an isolation group. Little aggregations were observed whether oligomer P1 was absorbed on titanium dioxide (TiO2) surface or in solid state. Since the pyrrole-based moieties in donor-π-acceptor type was the core component of oligomer P1 for light absorption, the corresponding dye-sensitized solar cell (DSSC) demonstrated the efficiency of light-to-electrical conversion by 0.48%. Higher conversion efficiency could be achieved by tuning the size of the isolation groups and the structure of the donor-π-acceptor type dyes.

Keywords pyrrole      synthesis      dye sensitizer      oligomer     
Corresponding Author(s): LI Zhen,Email:lizhen@whu.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Qianqian LI,Jianli HUA,Ming PENG, et al. Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 87-92.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0210-5
https://academic.hep.com.cn/foe/EN/Y2011/V4/I1/87
Fig.1  
Fig.1  
Fig.2  IR spectra of monomer 1, oligomer P0 and P1
Fig.2  IR spectra of monomer 1, oligomer P0 and P1
Fig.3  UV-vis spectra of oligomer P1
Fig.3  UV-vis spectra of oligomer P1
dyeMwa)Mw/Mna)λmax/nmb)? at λmax/(M-1·cm-1)b)λmax/nmc)E0-0/eVd)Eox/Ve)vs NHEEred/Ve)vs NHEEgap/Vf)
LI-134001.5462218004652.160.89-1.270.77
Tab.1  Some characterization data of P1
Fig.4  Cyclic voltammograms of P1 films on platinum electrode in 0.1 mol/L BuNPF, CHCN solution with a scan rate of 100 mV/s
Fig.4  Cyclic voltammograms of P1 films on platinum electrode in 0.1 mol/L BuNPF, CHCN solution with a scan rate of 100 mV/s
Fig.5  Schematic representation of the band positions in DSSCs based on oligomer P1. Energy scale is indicated in electron volts using the normal hydrogen electrode (NHE)
Fig.5  Schematic representation of the band positions in DSSCs based on oligomer P1. Energy scale is indicated in electron volts using the normal hydrogen electrode (NHE)
Fig.6  Current density-voltage characteristics obtained with a nanocrystalline TiO film supported on FTO conducting glass and derivatized with monolayer of the oligomer P1
Fig.6  Current density-voltage characteristics obtained with a nanocrystalline TiO film supported on FTO conducting glass and derivatized with monolayer of the oligomer P1
1 Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Accounts of Chemical Research , 2009, 42(11): 1809–1818
doi: 10.1021/ar900034t pmid:19408942
2 Gr?tzel M. Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research , 2009, 42(11): 1788–1798
doi: 10.1021/ar900141y pmid:19715294
3 Preat J, Jacquemin D, Perpète E A. Towards new efficient dye-sensitised solar cells. Energy & Environmental Science , 2010, 3(7): 891–904
doi: 10.1039/c000474j
4 Ning Z, Fu Y, Tian H. Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy & Environmental Science , 2010, 3(9): 1170–1181
doi: 10.1039/c003841e
5 Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews , 2010, 110(11): 6595–6663
doi: 10.1021/cr900356p pmid:20831177
6 Altobello S, Argazzi R, Caramori S, Contado C, Da Fré S, Rubino P, Choné C, Larramona G, Bignozzi C A. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. Journal of the American Chemical Society , 2005, 127(44): 15342–15343
doi: 10.1021/ja053438d pmid:16262377
7 Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Gr?tzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. Journal of the American Chemical Society , 2005, 127(3): 808–809
doi: 10.1021/ja0436190 pmid:15656598
8 Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin S M, Gr?tzel M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society , 2008, 130(32): 10720–10728
doi: 10.1021/ja801942j pmid:18642907
9 Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Gr?tzel M. New paradigm in molecular engineering of sensitizers for solar cell applications. Journal of the American Chemical Society , 2009, 131(16): 5930–5934
doi: 10.1021/ja9002684 pmid:19334729
10 Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chemistry of Materials , 2010, 22(5): 1915–1925
doi: 10.1021/cm9036988
11 Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P, Zakeeruddin S M, Gr?tzel M. An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. Journal of the American Chemical Society , 2008, 130(29): 9202–9203
doi: 10.1021/ja8024438 pmid:18582041
12 Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society , 2004, 126(39): 12218–12219
doi: 10.1021/ja0488277 pmid:15453726
13 Koumura N, Wang Z S, Mori S, Miyashita M, Suzuki E, Hara K. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. Journal of the American Chemical Society , 2006, 128(44): 14256–14257
doi: 10.1021/ja0645640 pmid:17076489
14 Snaith H J, Petrozza A, Ito S, Miura H, Gr?tzel M. Charge generation and photovoltaic operation of solid-state dye-sensitized solar cells incorporating a high extinction coefficient indolene-based sensitizer. Advanced Functional Materials , 2009, 19(11): 1810–1818
doi: 10.1002/adfm.200801751
15 Li Q, Lu L, Zhong C, Huang J, Huang Q, Shi J, Jin X, Peng T, Qin J, Li Z. New pyrrole-based organic dyes for dye-sensitized solar cells: convenient syntheses and high efficiency.Chemistry-A European Journal , 2009, 15(38): 9664–9668
doi: 10.1002/chem.200901150 pmid:19685537
16 Li Q, Lu L, Zhong C, Shi J, Huang Q, Jin X, Peng T, Qin J, Li Z. New indole-based metal-free organic dyes for dye-sensitized solar cells. Journal of Physical Chemistry B , 2009, 113(44): 14588–14595
doi: 10.1021/jp906334w pmid:19817476
17 Li Q, Lu C, Zhu J, Fu E, Zhong C, Li S, Cui Y, Qin J, Li Z. Nonlinear optical chromophores with pyrrole moieties as the conjugated bridge: enhanced NLO effects and interesting optical behavior. Journal of Physical Chemistry B , 2008, 112(15): 4545–4551
doi: 10.1021/jp0768322 pmid:18366206
18 Lim E, Kim M, Lee J, Jung B J, Cho N S, Lee J, Do L M, Shim H K. Relationship between the liquid crystallinity and field-effect-transistor behavior of fluorene-thiophene-based conjugated copolymers. Journal of Polymer Science A: Polymer Chemistry , 2006, 44(16): 4709–4721
doi: 10.1002/pola.21586
[1] Baoming LI,Enkai PENG,Leilei YE,Zhiyin WU. Synthesis and optical properties of soluble low bandgap poly (pyrrole methine) with alkoxyl substituent[J]. Front. Optoelectron., 2016, 9(1): 99-105.
[2] Zhen FANG, Yueting FAN, Yufeng LIU. Photochemical synthesis and photocatalysis application of ZnS/amorphous carbon nanotubes composites[J]. Front Optoelec Chin, 2011, 4(1): 121-127.
[3] Bo LV, Ming CHEN, Dan LU, Taorong GONG, Tangjun LI, Shuisheng JIAN. Novel algorithm for synthesis of fiber gratings[J]. Front Optoelec Chin, 2009, 2(3): 279-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed