Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 1-19    https://doi.org/10.1007/s12200-014-0387-5
REVIEW ARTICLE
Recent advances in development of vertical-cavity based short pulse source at 1.55 μm
Zhuang ZHAO(), Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR
Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Marcoussis, France
 Download: PDF(969 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews and discusses recent developments in passively mode-locked vertical external cavity surface emitting lasers (ML-VECSELs) for short pulse generation at 1.55 μm. After comparing ML-VECSELs to other options for short pulse generation, we reviewed the results of ML-VECSELs operating at telecommunication wavelength and point out the challenges in achieving sub-picosecond operation from a ML-VECSEL at 1.55 μm. We described our recent work in the VECSELs and semiconductor saturable absorber mirrors (SESAMs), their structure design, optimization and characterization, with the goal of moving the pulse width from picosecond to sub-picosecond.

Keywords semiconductor laser      vertical external cavity surface emitting laser (VECSEL)      indium phosphide      heat dissipation      saturable absorber mirror      mode-locking     
Corresponding Author(s): ZHAO Zhuang,Email:zhuang.zhao@lpn.cnrs.fr   
Issue Date: 05 March 2014
 Cite this article:   
Zhuang ZHAO,Sophie BOUCHOULE,Jean-Christophe HARMAND, et al. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Front Optoelec, 2014, 7(1): 1-19.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0387-5
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/1
Fig.1  Summary of mode-locked pulse characteristics obtained from mode-locked VECSELs in near infrared range
Fig.2  Typical structure of an optically pumped VECSEL []
λ0 /nmactive region (quantum wells)Bottom mirrorPout/Wheat spreader (HS) ordownward heat dissipation (DHD)operating temperature /Kreference (date)
155020 InGaAsP48-pairInP/InGaAsP0.07DHD233[34](2004)
0.8HS240[35](2004)
157010 InGaAlAs35-pairGaAs/AlGaAs2.6HS283[36](2008)
15508 InGaAlAshybrid 17-pair GaAs/AlGaAs-gold mirror0.07DHD298[37](2008)
Tab.1  Summary of main results obtained with 1.55 μm OP-VECSELs
Fig.3  Schematics of thermal management techniques. (a) Intra-cavity heat spreader approach (after Ref. []); (b) downward heat dissipation approach (after Ref. [])
layersaverage thermal conductivity/(W?(K?m)-1)absorption coefficient at the pump wavelength /cm-1layer thickness /μm
heatspreader20000300
InP phase layer6801.1
quartenary active region4.51.5 × 1040.7
48-pair InP/InGaAsP DBRκr = 38.5, κz = 12.7011.3
35-pair GaAs/AlGaAs DBRκr = 74.4, κz = 69.9209.3
17- pair GaAs/AlGaAs DBRκr = 74.4, κz = 69.9204
InP substrate680300
GaAs substrate550 (*)300
CVD diamond20000300
copper4000 (*)varied
Au3001.3 × 106150
AuIn21620 (*)0.4
In810 (*)50
Cu heatsink4000 (*)1000
Tab.2  Thermal conductivity values and layer thickness used in the thermal simulations. (*): As the pump power has been completely absorbed after the Au layer in the mirror, the absorption coefficient was set to zero in the simulation
Fig.4  Temperature rise in active layer calculated versus pump spot radius for 300 μm diamond heat spreader and with different DBRs and substrates: 35-pair GaAs/AlGaAs DBR mirror on GaAs substrate (red dash), and 48 pairs InP/InGaAsP DBR mirror on InP substrate (blue dot). The limit case of the active region directly bonded onto the same heat spreader is a reference (magenta line) []
Fig.5  Temperature rise in active region calculated versus pump spot radius for a hybrid GaAs/AlGaAs-gold mirror with different host substrates: 300 μm thick CVD diamond (red dash dot), 150 μm thick copper (blue dash), and 150 μm thick gold (magenta dot). The limit case of the active region directly bonded onto 300 μm diamond host substrate with no bottom mirror nor substrate is also reported as a reference (black line) []
Fig.6  Fabrication process of VECSEL chips
Fig.7  BF-STEM image of interface between InP-based active structure and metamorphic GaAs/AlGaAs DBR regrown by MBE []
Fig.8  VECSEL plane-concave cavity setup. The VECSEL chip is attached to a copper mount with heat conductive paste. The temperature of the copper plate is measured with a 10 kΩ thermistor. The copper plate temperature is regulated with a Peltier element, which is fixed to a heatsink. The heat is dissipated from the heatsink with a fan or with water cooling system
Fig.9  CW emitted power of VECSELs with CVD-diamond host substrate versus incident pump power at different temperatures in the plane concave cavity configuration
Fig.10  General concept of SESAM without any restrictions on the mirror design []
Fig.11  Carrier dynamics in SESAMs: Electrons are excited to the conduction band and thermalize on a time scale of 100 fs. The electrons then recombine or get trapped by defects on a time scale of 0.1-100 ps []
Fig.12  Schematic diagram with recombination scheme using N-rich GaNAs layers as recombination center []
Fig.13  Nonlinear reflectivities of a SESAM as function of time delay between pump and probe pulse (The pulse duration of pump and probe signal is ~ 1.5 ps)
Fig.14  Illustration of design of a SESAM. (a) Schematic overview of the whole structure of SESAM, a quantum well surrounded by two GaNAs planes of absorption region and top phase layers of GaAs and AlGaAs were grown alternatively; (b) calculated GDD of the SESAM as function of the number of phase layers on top of absorbing region
resonanttype Atype Banti-resonant
layernominal thickness/nmSiO2×277××
GaAs9.19.1××
Al0.7Ga0.3As140.0140.0140.0×
Fsat/(μJ?cm-2)7.213.710.1(63)
?R/%3.41.62.4(0.42)
Tab.3  Nominal thickness of top layers and measured nonlinear parameters of SESAM in the four configurations. Values in brackets are estimated from a transfer matrix calculation (from Ref. [])
Fig.15  Measured nonlinear reflectivity of SESAMs type A (red squares) and type B (blue squares). The red and blue lines are the corresponding fitting curves
Fig.16  (a) Experimental reflectivity of type A SESAM (blue curve) and type B SESAM (red dash); (b) corresponding calculated GDD value of the two SESAMs (from Ref. [])
Fig.17  Four-mirror cavity configuration of mode-locked VECSEL
Fig.18  (a) Autocorrelation trace of the mode-locked pulse obtained for type-A SESAM. Blue curve: experimental data. Red dash: fit assuming a sech pulse; (b) corresponding average optical spectrum (from Ref. [])
Fig.19  (a) Autocorrelation trace of the mode-locked pulse obtained for type-B SESAM. Blue curve: experimental data. Red dash: fit assuming a sech pulse; (b) corresponding average optical spectrum (from Ref. [])
1 Mollenauer L F, Mamyshev P V, Gripp J, Neubelt M J, Mamysheva N, Grüner-Nielsen L, Veng T. Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters , 2000, 25(10): 704-706 .
doi: 10.1364/OL.25.000704 pmid:18064157
2 Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE , 2000, 88(6): 728-749
doi: 10.1109/5.867687
3 Mule A V, Glytsis E N, Gaylord T K, Meindl J D. Electrical and optical clock distribution networks for gigascale microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems , 2002, 10(5): 582-594
doi: 10.1109/TVLSI.2002.801604
4 Aisawa S, Sakamoto T, Fukui M, Kani J, Jinno M, Oguchi K. Ultra-wideband, long distance WDM demonstration of 1 Tbit/s (50×20 Gbit/s) 600 km transmission using 1550 and 1580 nm wavelength bands. Electronics Letters , 1998, 34(11): 1127-1128
doi: 10.1049/el:19980777
5 Keeler G A, Nelson B E, Agarwal D, Debaes C, Helman N C, Bhatnagar A, Miller D A B. The benefits of ultrashort optical pulses in optically interconnected systems. IEEE Journal on Selected Topics in Quantum Electronics , 2003, 9(2): 477-485
doi: 10.1109/JSTQE.2003.813317
6 Juodawlkis P W, Twichell J C, Betts G E, Hargreaves J J, Younger R D, Wasserman J L, O’Donnell F J, Ray K G, Williamson R C. Optically sampled analog-to-digital converters. IEEE Transactions on Microwave Theory and Techniques , 2001, 49(10): 1840-1853
doi: 10.1109/22.954797
7 Lau K Y, Ury I, Yariv A. Passive and active mode locking of a semiconductor laser without an external cavity. Applied Physics Letters , 1985, 46(12): 1117-1119
doi: 10.1063/1.95727
8 Hou L, Haji M, Akbar J, Qiu B, Bryce A C. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. Optics Letters , 2011, 36(6): 966-968
doi: 10.1364/OL.36.000966 pmid:21403744
9 Merghem K, Akrout A, Martinez A, Aubin G, Ramdane A, Lelarge F, Duan G H. Pulse generation at 346 GHz using a passively mode locked quantum-dash-based laser at 1.55 μm. Applied Physics Letters , 2009, 94(2): 021107-1-021107-3
doi: 10.1063/1.3070544
10 Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters , 2000, 36(24): 2027-2029
doi: 10.1049/el:20001391
11 Xu C, Liu X, Mollenauer L F, Wei X. Comparison of return-to-zero differential phase-shift keying and ON-OFF keying in long-haul dispersion managed transmission. IEEE Photonics Technology Letters , 2003, 15(4): 617-619
doi: 10.1109/LPT.2003.809317
12 Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express , 2011, 19(7): 6155-6163
doi: 10.1364/OE.19.006155 pmid:21451640
13 Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports , 2006, 429(2): 67-120
doi: 10.1016/j.physrep.2006.03.004
14 Oehler A E H, Südmeyer T, Weingarten K J, Keller U. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses. Optics Express , 2008, 16(26): 21930-21935
doi: 10.1364/OE.16.021930
15 Hoogland S, Dhanjal S, Tropper A C, Roberts J S, H?ring R, Paschotta R, Morier-Genoud F, Keller U. Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters , 2000, 12(9): 1135-1137
doi: 10.1109/68.874213
16 Wilcox K G, Quarterman A H, Apostolopoulos V, Beere H E, Farrer I, Ritchie D A, Tropper A C. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser. Optics Express , 2012, 20(7): 7040-7045
doi: 10.1364/OE.20.007040 pmid:22453384
17 Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C. A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics , 2009, 3(12): 729-731
doi: 10.1038/nphoton.2009.216
18 Rudin B, Wittwer V J, Maas D J H C, Hoffmann M, Sieber O D, Barbarin Y, Golling M, Südmeyer T, Keller U. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Optics Express , 2010, 18(26): 27582-27588
doi: 10.1364/OE.18.027582 pmid:21197032
19 Wilcox K G, Quarterman A H, Beere H, Ritchie D A, Tropper A C. High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser. IEEE Photonics Technology Letters , 2010, 22(14): 1021-1023
doi: 10.1109/LPT.2010.2049015
20 Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S. Sub-500-fs soliton pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power. Applied Physics Letters , 2002, 80(21): 3892-3894
doi: 10.1063/1.1482143
21 Klopp P, Griebner U, Zorn M, Klehr A, Liero A, Weyers M, Erbert G. Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Optics Express , 2009, 17(13): 10820-10834
doi: 10.1364/OE.17.010820 pmid:19550482
22 Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 2.1-W picosecond passively mode-locked external-cavity semiconductor laser. Optics Letters , 2005, 30(3): 272-274
doi: 10.1364/OL.30.000272 pmid:15751882
23 Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics , 2002, 38(9): 1268-1275
doi: 10.1109/JQE.2002.802111
24 Hoogland S, Garnache A, Sagnes I, Roberts J S, Tropper A C. 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photonics Technology Letters , 2005, 17(2): 267-269
doi: 10.1109/LPT.2004.839464
25 Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 10-GHz passively mode-locked surface emitting semiconductor laser with 1.4-W average output power. Applied Physics Letters , 2005, 86(13): 131102-1-131102-33
doi: 10.1063/1.1890485
26 Lorenser D, Unold H J, Maas D J H C, Aschwanden A, Grange R, Paschotta R, Ebling D, Gini E, Keller U. Towards wafer-scale integration of high repetition rate passively modelocked surface-emitting semiconductor lasers. Applied Physics B, Lasers and Optics , 2004, 79(8): 927-932
doi: 10.1007/s00340-004-1675-3
27 Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power. IEEE Journal of Quantum Electronics , 2006, 42(8): 838-847
doi: 10.1109/JQE.2006.878183
28 Hoogland S, Garnache A, Sagnes I, Paldus B, Weingarten K J, Grange R, Haiml M, Paschotta R, Keller U, Tropper A C. Picosecond pulse generation with 1.5 μm passively modelocked surface-emitting semiconductor laser. Electronics Letters , 2003, 39(11): 846-847
doi: 10.1049/el:20030576
29 Lindberg H, Sadeghi M, Westlund M, Wang S M, Larsson A, Strassner M, Marcinkevicius S. Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber. Optics Letters , 2005, 30(20): 2793-2795
doi: 10.1364/OL.30.002793 pmid:16252777
30 Saarinen E J, Puustinen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. Power-scalable 1.57 μm mode-locked semiconductor disk laser using wafer fusion. Optics Letters , 2009, 34(20): 3139-3141
doi: 10.1364/OL.34.003139 pmid:19838252
31 Khadour A, Bouchoule S, Aubin G, Harmand J C, Decobert J, Oudar J L. Ultrashort pulse generation from 1.56 μm mode-locked VECSEL at room temperature. Optics Express , 2010, 18(19): 19902-19913
doi: 10.1364/OE.18.019902 pmid:20940881
32 Kuznetsov M. VECSEL Semiconductor Lasers: A Path to High-Power, Quality Beam and UV to IR Wavelength by Design. In: Okhotnikov O G, ed. Semiconductor Disk Lasers: Physics and Technology . Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
33 Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Optics Letters , 2008, 33(22): 2719-2721
doi: 10.1364/OL.33.002719
34 Lindberg H, Strassner M, Bengtsson J, Larsson A. InP-based optically pumped VECSEL operating CW at 1550 nm. IEEE Photonics Technology Letters , 2004, 16(2): 362-364
doi: 10.1109/LPT.2003.823127
35 Lindberg H, Strassner M, Gerster E, Larsson A. 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm. Electronics Letters , 2004, 40(10): 601-602
doi: 10.1049/el:20040435
36 Rautiainen J, Lyytik?inen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. 2.6 W optically-pumped semiconductor disk laser operating at 1.57-μm using wafer fusion. Optics Express , 2008, 16(26): 21881-21886
doi: 10.1364/OE.16.021881 pmid:19104620
37 Tourrenc J P, Bouchoule S, Khadour A, Harmand J C, Decobert J, Lagay N, Lafosse X, Sagnes I, Leroy L, Oudar J L. Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal-metamorphic mirror for single-mode high power operation. Optical and Quantum Electronics , 2008, 40(2-4): 155-165
doi: 10.1007/s11082-007-9174-5
38 Lindberg H, Strassner M, Bengtsson J, Larsson A. High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader. IEEE Photonics Technology Letters , 2004, 16(5): 1233-1235
doi: 10.1109/LPT.2004.826235
39 Zhao Z, Bouchoule S, Ferlazzo L, Sirbu A, Mereuta A, Kapon E, Galopin E, Harmand J C, Decobert J, Oudar J L. Cost-effective thermally-managed 1.55-μm VECSEL with hybrid mirror on copper substrate. IEEE Journal of Quantum Electronics , 2012, 48(5): 643-650
doi: 10.1109/JQE.2012.2189371
40 Kemp A J, Valentine G J, Hopkins J M, Hastie J E, Smith S A, Calvez S, Dawson M D, Burns D. Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. IEEE Journal of Quantum Electronics , 2005, 41(2): 148-155
doi: 10.1109/JQE.2004.839706
41 Maclean A J, Birch R B, Roth P W, Kemp A J, Burns D. Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders. Journal of the Optical Society of America. B, Optical Physics , 2009, 26(12): 2228-2236
doi: 10.1364/JOSAB.26.002228
42 Lindberg H, Larsson A, Strassner M. Single-frequency operation of a high-power, long-wavelength semiconductor disk laser. Optics Letters , 2005, 30(17): 2260-2262
doi: 10.1364/OL.30.002260 pmid:16190437
43 Bousseksou A, Bouchoule S, El Kurdi M, Strassner M, Sagnes I, Crozat P, Jacquet J. Fabrication and characterization of 1.55μm single transverse mode large diameter electrically pumped VECSEL. Optical and Quantum Electronics , 2007, 38(15): 1269-1278
doi: 10.1007/s11082-007-9060-1
44 Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band. Optics Express , 2011, 19(18): 16996-17001
doi: 10.1364/OE.19.016996 pmid:21935059
45 Zhao Z, Bouchoule S, Galopin E, Ferlazzo L, Patriarche G, Harmand J C, Decobert J, Oudar J L. Thermal management in 1.55μm InP-based VECSELs: heteroepitaxy of GaAs-based mirror and integration with electroplated substrate. In: French Symposium on Emerging Technologies for Micro- and Nano-fabrication, France , 2013
46 Paschotta R, Keller U. Passive mode locking with slow saturable absorbers. Applied Physics B, Lasers and Optics , 2001, 73(7): 653-662
doi: 10.1007/s003400100726
47 Keller U. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Applied Physics B, Lasers and Optics , 2010, 100(1): 15-25
doi: 10.1007/s00340-010-4045-3
48 Keller U, Knox W H, Roskos H. Coupled-cavity resonant passive mode-locked Ti:sapphire laser. Optics Letters , 1990, 15(23): 1377-1379
doi: 10.1364/OL.15.001377 pmid:19771096
49 Keller U. Ultrafast all-solid state laser technology. Applied Physics B, Lasers and Optics , 1994, 58(5): 347-363
doi: 10.1007/BF01081874
50 Haiml M, Siegner U, Morier-Genoud F, Keller U, Luysberg M, Lutz R C, Specht P, Weber E R. Optical nonlinearity in low-temperature-grown GaAs: microscopic limitations and optimization strategies. Applied Physics Letters , 1999, 74(21): 3134-3136
doi: 10.1063/1.124086
51 Lamprecht K F, Juen S, Palmetshofer L, Hopfel R A. Ultrashort carrier lifetimes in H+ bombarded InP. Applied Physics Letters , 1991, 59(8): 926-928
doi: 10.1063/1.106303
52 Mangeney J, Choumane H, Patriarche G, Leroux G, Aubin G, Harmand J C, Oudar J L, Bernas H. Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers. Applied Physics Letters , 2001, 79(17): 2722-2724
doi: 10.1063/1.1408602
53 Lugagne Delpon E, Oudar J L, Bouché N, Raj R, Shen A, Stelmakh N, Lourtioz J M. Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells. Applied Physics Letters , 1998, 72(7): 759-761
doi: 10.1063/1.120885
54 Joulaud L, Mangeney J, Lourtioz J M, Crozat P, Patriarche G. Thermal stability of ion irradiated InGaAs with (sub-) picosecond carrier lifetime. Applied Physics Letters , 2003, 82(6): 856-858
doi: 10.1063/1.1543231
55 Khadour A. Source d'impulsions brèves à 1.55 μm en laser à cavité verticale externe pour application à l'échantillonnage optique linéaire. Dissertation for the Doctoral Degree . France: école Polytechnique, 2009
56 Gupta S, Whitaker J F, Mourou G A. Ultrafast carrier dynamics in III–V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE Journal of Quantum Electronics , 1992, 28(10): 2464-2472
doi: 10.1109/3.159553
57 Chin A, Chen W J, Ganikhanov F, Lin G R, Shieh J M, Pan C L, Hsieh K C. Microstructure and subpicosecond photoresponse in GaAs grown by molecular beam epitaxy at very low temperatures. Applied Physics Letters , 1996, 69(3): 397-399
doi: 10.1063/1.118073
58 Okuno T, Masumoto Y, Ito M, Okamoto H. Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells. Applied Physics Letters , 2000, 77(1): 58-60
doi: 10.1063/1.126876
59 Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters , 1991, 59(25): 3276-3278
doi: 10.1063/1.105729
60 Harmon E S, Melloch M R, Woodall J M, Nolte D D, Otsuka N, Chang C L. Carrier lifetime versus anneal in low temperature growth GaAs. Applied Physics Letters , 1993, 63(16): 2248-2250
doi: 10.1063/1.110542
61 Takahashi R, Kawamura Y, Kagawa T, Iwamura H. Ultrafast 1.55-μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells. Applied Physics Letters , 1994, 65(14): 1790-1792
doi: 10.1063/1.112870
62 Okuno T, Masumoto Y, Sakuma Y, Hayasaki Y, Okamoto H. Femtosecond response time in beryllium-doped low-temperature-grown GaAs/AlAs multiple quantum wells. Applied Physics Letters , 2001, 79(6): 764-766
doi: 10.1063/1.1390478
63 Sderstr?m D, Marcinkevicius S, Karlsson S, Lourdudoss S. Carrier trapping due to Fe3+/Fe2+ in epitaxial InP. Applied Physics Letters , 1997, 70(25): 3374-3376
doi: 10.1063/1.119175
64 Gicquel-Guézo M, Loualiche S, Even J, Labbe C, Dehaese O, Le Corre A, Folliot H, Pellan Y. 290 fs switching time of Fe-doped quantum well saturable absorbers in a microcavity in 1.55 μm range. Applied Physics Letters , 2004, 85(24): 5926-5928
doi: 10.1063/1.1804239
65 Kondow M, Uomi K, Hosomi K, Mozume T. Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source. Japanese Journal of Applied Physics , 1994, 33(8A): L1056-L1058
doi: 10.1143/JJAP.33.L1056
66 Yang X, Héroux J B, Mei L F, Wang W I. InGaAsNSb/GaAs quantum wells for 1.55 μm lasers grown by molecular-beam epitaxy. Applied Physics Letters , 2001, 78(26): 4068-4070
doi: 10.1063/1.1379787
67 H?rk?nen A, Jouhti T, Tkachenko N V, Lemmetyinen H, Ryvkin B, Okhotnikov O G, Sajavaara T, Keinonen J. Dynamics of photoluminescence in GaInNAs saturable absorber mirrors. Applied Physics. A, Materials Science & Processing , 2003, 77(7): 861-863
doi: 10.1007/s00339-003-2240-3
68 Le D? M, Harmand J C, Meunier K, Patriarche G, Oudar J L. Growth of GaNxAs1-x atomic monolayers and their insertion in the vicinity of GaInAs quantum wells. IEE Proceedings- Optoelectronics , 2004, 151(5): 254-258
doi: 10.1049/ip-opt:20040889
69 D? M L, Harmand J C, Mauguin O, Largeau L, Travers L, Oudar J L. Quantum-well saturable absorber at 1.55 μm on GaAs substrate with a fast recombination rate. Applied Physics Letters , 2006, 88(20): 201110-1-201110-3
doi: 10.1063/1.2204447
70 Zhao Z, Bouchoule S, Song J Y, Galopin E, Harmand J C, Decobert J, Aubin G, Oudar J L. Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL. Optics Letters , 2011, 36(22): 4377-4379
doi: 10.1364/OL.36.004377 pmid:22089569
71 Cojocaru E, Julea T, Herisanu N. Stability and astigmatic compensation analysis of five- and six- or seven-mirror cavities for mode-locked dye lasers. Applied Optics , 1989, 28(13): 2577-2580
doi: 10.1364/AO.28.002577 pmid:20555561
72 Li K K, Dienes A, Whinnery J R. Stability and astigmatic compensation analysis of five-mirror cavity for mode-locked dye lasers. Applied Optics , 1981, 20(3): 407-411
doi: 10.1364/AO.20.000407 pmid:20309125
73 Anctil G, McCarthy N, Piché M. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis. Applied Optics , 2000, 39(36): 6787-6798
doi: 10.1364/AO.39.006787 pmid:18354693
74 Hoffmann M, Sieber O D, Maas D J H C, Wittwer V J, Golling M, Südmeyer T, Keller U. Experimental verification of soliton-like pulse-shaping mechanisms in passively modelocked VECSELs. Optics Express , 2010, 18(10): 10143-10153
doi: 10.1364/OE.18.010143
75 Sieber O D, Hoffmann M, Wittwer V J, Mangold M, Golling M, Tilma B W, Südmeyer T, Keller U. Experimentally verified pulse formation model for high-power femtosecond VECSELs. Applied Physics B, Lasers and Optics , 2013, 113(1): 133-145
doi: 10.1007/s00340-013-5449-7
[1] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[2] Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
[3] Yunsong ZHAO,Yeyu ZHU,Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers[J]. Front. Optoelectron., 2016, 9(2): 290-300.
[4] Md. Jarez MIAH,Vladimir P. KALOSHA,Ricardo ROSALES,Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Front. Optoelectron., 2016, 9(2): 225-237.
[5] Sudharsanan SRINIVASAN,Michael DAVENPORT,Martijn J. R. HECK,John HUTCHINSON,Erik NORBERG,Gregory FISH,John BOWERS. Low phase noise hybrid silicon mode-locked lasers[J]. Front. Optoelectron., 2014, 7(3): 265-276.
[6] Yu Jin HEO, Hyo Tae KIM, Sahn NAHM, Jihoon KIM, Young Joon YOON, Jonghee KIM. Ceramic-metal package for high power LED lighting[J]. Front Optoelec, 2012, 5(2): 133-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed