|
|
Integrated coherent combining of angled-grating broad-area lasers |
Yunsong ZHAO1,2,*( ),Yeyu ZHU1,2,Lin ZHU1,2 |
1. Electrical and Computer Engineering Department, Clemson University, Clemson SC 29634, USA 2. Center for Optical Material Science and Engineering Technologies, Clemson University, Clemson SC 29634, USA |
|
|
Abstract In this paper, we investigated coherent beam combining of angled-grating broad-area lasers in a completely integrated approach. We obtained the simultaneous coherent beam combining and single transverse mode operation on a single chip through the integrated coupling regions and the transverse Bragg resonance (TBR) gratings, respectively. The proposed combining method can be easily extended to a zigzag-like laser array. We analyzed the scalability of the zigzag-like combining structure and compared it with other coherent combining methods. Two and six angled-grating broad-area lasers are fabricated and coherently combined by use of the proposed method. The high contrast interference fringes within an overall single lobe envelope in the measured far field prove that the emitters in the array are indeed coherently combined. By p-side-down bonding, we obtained over 1 W output power with over 90% combining efficiency in the two coherently combined lasers.
|
Keywords
semiconductor lasers
angled-grating broad-area lasers
coherent beam combining
high power
high brightness
|
Corresponding Author(s):
Yunsong ZHAO
|
Just Accepted Date: 25 February 2016
Online First Date: 29 March 2016
Issue Date: 05 April 2016
|
|
1 |
Hanke C. High power semiconductor laser diodes. Informacije Midem-Journal of Microelectronics Electronic Components and Materials, 2001, 31(4): 232–236
|
2 |
Ziegler M, Tomm J W, Zeimer U, Elsaesser T. Imaging catastrophic optical mirror damage in high-power diode lasers. Journal of Electronic Materials, 2010, 39(6): 709–714
https://doi.org/10.1007/s11664-010-1146-z
|
3 |
DeMars S D, Dzurko K M, Lang R J, Welch D F, Scrifres D R, Hardy A. Angled-grating distributed feedback laser with 1 W CW single-mode diffraction-limited output at 980 nm. In: Proceedings of Summaries of papers presented at the Conference on Lasers and Electro-Optics, 1996. 1996, 77–78
|
4 |
DWong V V, DeMars S D, Schoenfelder A,Lang R J . Angled-grating distributed-feedback laser with 1.2 W CW single-mode diffraction-limited output at 10.6 μm. In: Proceedings of Summaries of papers presented at the Conference on Laser and Electro-Optics, 1998. 1998, 34–35
|
5 |
Paschke K, Bogatov A, Bugge F, Drakin A E, Fricke J, Guther R, Stratonnikov A A, Wenzel H, Erbert G, Trankle G. Properties of ion-implanted high-power angled-grating distributed-feedback lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(5): 1172–1178
https://doi.org/10.1109/JSTQE.2003.820915
|
6 |
Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567–577
https://doi.org/10.1109/JSTQE.2005.850241
|
7 |
Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tünnermann A, Ludewigt K, Gowin M, ten Have E, Jung M. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Optics Letters, 2011, 36(16): 3118–3120
https://doi.org/10.1364/OL.36.003118
pmid: 21847179
|
8 |
Andrusyak O, Smirnov V, Venus G, Glebov L. Beam combining of lasers with high spectral density using volume Bragg gratings. Optics Communications, 2009, 282(13): 2560–2563
https://doi.org/10.1016/j.optcom.2009.03.019
|
9 |
Chann B, Huang R K, Missaggia L J, Harris C T, Liau Z L, Goyal A K, Donnelly J P, Fan T Y, Sanchez-Rubio A, Turner G W. Near-diffraction-limited diode laser arrays by wavelength beam combining. Optics Letters, 2005, 30(16): 2104–2106
https://doi.org/10.1364/OL.30.002104
pmid: 16127924
|
10 |
Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B. Spectral beam combining of a 980 nm tapered diode laser bar. Optics Express, 2010, 18(2): 893–898
https://doi.org/10.1364/OE.18.000893
pmid: 20173910
|
11 |
Welch D F, Scifres D, Cross P, Kung H, Streifer W, Burnham R D, Yaeli J. High-power (575 mW) single-lobed emission from a phased-array laser. Electronics Letters, 1985, 21(14): 603–605
https://doi.org/10.1049/el:19850426
|
12 |
Kapon E, Katz J, Yariv A. Supermode analysis of phase-locked arrays of semiconductor lasers. Optics Letters, 1984, 9(4): 125–127
https://doi.org/10.1364/OL.9.000125
pmid: 19721518
|
13 |
Welch D F, Cross P S, Scifres D R, Streifer W, Burnham R D. High-power (CW) in-phase locked “Y” coupled laser arrays.. Applied Physics Letters, 1986, 49(24): 1632–1634
https://doi.org/10.1063/1.97249
|
14 |
Botez D, Hayashida P, Mawst L J, Roth T J. Diffraction-limited-beam, high-power operation from X-junction coupled phase-locked arrays of AlGaAs/GaAs diode lasers. Applied Physics Letters, 1988, 53(15): 1366–1368
https://doi.org/10.1063/1.99980
|
15 |
Hermansson B, Yevick D. Analysis of Y-junction and coupled laser arrays. Applied Optics, 1989, 28(1): 66–73
https://doi.org/10.1364/AO.28.000066
pmid: 20548427
|
16 |
Botez D, Mawst L J, Peterson G, Roth T J. Resonant optical transmission and coupling in phase-locked diode laser arrays of antiguides: the resonant optical waveguide array. Applied Physics Letters, 1989, 54(22): 2183–2185
https://doi.org/10.1063/1.101159
|
17 |
Zmudzinski C, Botez D, Mawst L J, Tu C, Frantz L. Coherent 1 W continuous wave operation of large-aperture resonant arrays of antiguided diode lasers. Applied Physics Letters, 1993, 62(23): 2914–2916
https://doi.org/10.1063/1.109195
|
18 |
Chang-Hasnain C, Welch D F, Scifres D R, Whinnery J R, Dienes A, Burnham R D. Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity. Applied Physics Letters, 1986, 49(11): 614–616
https://doi.org/10.1063/1.97613
|
19 |
Henderson G A, Begley D L. Injection-locked semiconductor laser array using a graded-index rod: a computational model. Applied Optics, 1989, 28(21): 4548–4551
https://doi.org/10.1364/AO.28.004548
pmid: 20555913
|
20 |
Waarts R, Mehuys D, Nam D, Welch D, Streifer W, Scifres D. High-power, CW, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity. Applied Physics Letters, 1991, 58(23): 2586–2588
https://doi.org/10.1063/1.104830
|
21 |
Mehuys D, Streifer W, Waarts R G, Welch D F. Modal analysis of linear Talbot-cavity semiconductor lasers. Optics Letters, 1991, 16(11): 823–825
https://doi.org/10.1364/OL.16.000823
pmid: 19776797
|
22 |
Liu B, Liu Y, Braiman Y. Coherent beam combining of high power broad-area laser diode array with a closed-V-shape external Talbot cavity. Optics Express, 2010, 18(7): 7361–7368
https://doi.org/10.1364/OE.18.007361
pmid: 20389757
|
23 |
Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser. Journal of Optics. A, Pure and Applied Optics, 2005, 7(5): L1–L7
https://doi.org/10.1088/1464-4258/7/5/L01
|
24 |
Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Applied Physics Letters, 2005, 86(20): 201118
https://doi.org/10.1063/1.1925310
|
25 |
Goldberg L, Weller J F, Mehuys D, Welch D F, Scifres D R. 12 W broad area semiconductor amplifier with diffraction-limited optical output. Electronics Letters, 1991, 27(11): 927–929
https://doi.org/10.1049/el:19910580
|
26 |
Walpole J N, Kintzer E S, Chinn S R, Wang C A, Missaggia L J. High-power strained-layer InGaAs/AlGaAs tapered traveling wave amplifier. Applied Physics Letters, 1992, 61(7): 740–742
https://doi.org/10.1063/1.107783
|
27 |
Shay T M, Benham V, Baker J T, Sanchez A D, Pilkington D, Lu C A, 0. Self-synchronous and self-referenced coherent beam combination for large optical arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480–486
https://doi.org/10.1109/JSTQE.2007.897173
|
28 |
Cheung E C, Ho J G, Goodno G D, Rice R R, Rothenberg J, Thielen P, Weber M, Wickham M. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Optics Letters, 2008, 33(4): 354–356
https://doi.org/10.1364/OL.33.000354
pmid: 18278108
|
29 |
Goodno G D, McNaught S J, Rothenberg J E, McComb T S, Thielen P A, Wickham M G, Weber M E. Active phase and polarization locking of a 1.4 kW fiber amplifier. Optics Letters, 2010, 35(10): 1542–1544
https://doi.org/10.1364/OL.35.001542
pmid: 20479802
|
30 |
Uberna R, Bratcher A, Alley T G, Sanchez A D, Flores A S, Pulford B. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Optics Express, 2010, 18(13): 13547–13553
https://doi.org/10.1364/OE.18.013547
pmid: 20588486
|
31 |
Wickham M. Coherent beam combining of fiber amplifiers and solid-state lasers including the use of diffractive optical elements. In: Proceedings of Conference on Lasers and Electro-Optics, OSA. 2010, paper CThG2
|
32 |
Augst S J, Montoya J, Creedon K, Kansky J, Fan T Y, Sanchez-Rubio A. Intracavity coherent beam combining of 21 semiconductor gain elements using SPGD. In: Proceedings of CLEO: Lasers and Electro-Optics. 2012, paper CTu1D.1
|
33 |
Huang R K, Chan B, Missaggia L J, Augst S J, Connors M K, Turner G W, Sanchez-Rubio A, Donnelly J P, Hostetler J L, Miester C, Dorsch F. Coherently combined diode laser arrays and stacks/ In: Proceedings of CLEO: Quantum Electronics and Laser Science. 2009, paper CWF1
|
34 |
Sarangan A M, Wright M W, Marciante J R, Bossert D J. Spectral properties of angled-grating high-power semiconductor lasers. IEEE Journal of Quantum Electronics, 1999, 35(8): 1220–1230
https://doi.org/10.1109/3.777224
|
35 |
Glova A F. Phase locking of optically coupled lasers. Quantum Electronics, 2003, 33(4): 283–306
https://doi.org/10.1070/QE2003v033n04ABEH002415
|
36 |
Wu T W, Chang W Z, Galvanauskas A, Winful H G. Model for passive coherent beam combining in fiber laser arrays. Optics Express, 2009, 17(22): 19509–19518
https://doi.org/10.1364/OE.17.019509
pmid: 19997171
|
37 |
Chang W Z, Wu T W, Winful H G, Galvanauskas A. Array size scalability of passively coherently phased fiber laser arrays. Optics Express, 2010, 18(9): 9634–9642
https://doi.org/10.1364/OE.18.009634
pmid: 20588811
|
38 |
Chen K L, Wang S. Single-lobe symmetric coupled laser arrays. Electronics Letters, 1985, 21(8): 347–349
https://doi.org/10.1049/el:19850245
|
39 |
Chen K, Wang S. Analysis of symmetric Y junction laser arrays with uniform near field distribution. Electronics Letters, 1986, 22(12): 644–645
https://doi.org/10.1049/el:19860441
|
40 |
Bachmann F, Loosen P, Poprawe R, eds. High Power Diode Lasers. In:Ultrashort Pulse Laser Technology. Berlin: Springer, 2006
|
41 |
Nabors C D. Effects of phase errors on coherent emitter arrays. Applied Optics, 1994, 33(12): 2284–2289
https://doi.org/10.1364/AO.33.002284
pmid: 20885575
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|