Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 394-401    https://doi.org/10.1007/s12200-015-0555-2
RESEARCH ARTICLE
Transmission of 200 Tb/s (375 × 3 × 178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF
Ming LUO1,Qi MO1,Xiang LI1,Rong HU1,Ying QIU1,Cai LI1,Zhijian LIU1,Wu LIU1,Huang YU1,Wei DU1,Jing XU2,Zhixue HE1,Qi YANG1,*(),Shaohua YU1
1. State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074, China
2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1230 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A few-mode fiber (FMF) is designed to support three spatial modes (LP01, LP11a, and LP11b) and fabricated through plasma chemical vapor deposition (PCVD)and rod-in-tube (RIT) method. Using PDM-DFTS-OFDM-32QAM modulation, wavelength division multiplexing, mode multiplexing, and coherent detection, we successfully demonstrated 200 Tb/s (375 × 3 × 178.125 Gb/s) signal over 1 km FMF using C and L bands with 25 GHz channel spacing. After 1 km FMF transmission, all the tested bit error rates (BERs) are below 20% forward error correction (FEC) threshold (2.0 × 10−2). Within each sub-channel, we achieved a spectral efficiency of 21.375 bits/Hz in the C and L bands.

Keywords few-mode fiber (FMF)      mode multiplexing      coherent detection     
Corresponding Author(s): Qi YANG   
Just Accepted Date: 28 October 2015   Online First Date: 16 November 2015    Issue Date: 24 November 2015
 Cite this article:   
Ming LUO,Qi MO,Xiang LI, et al. Transmission of 200 Tb/s (375 × 3 × 178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF[J]. Front. Optoelectron., 2015, 8(4): 394-401.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0555-2
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/394
Fig.1  

Experimental setup for the 200 Tb/s PDM-DFTS-OFDM-32QAM over FMF transmission. ECL: external cavity laser. WSS: wavelength selective switch. mod.: modulator. EDFA: Erbium doped fiber amplifier. ICR: integrated coherent receiver. PBS: polarization beam splitter. PBC: polarization beam combiner. MUX: multiplexer. LO: local oscillator. DPO: digital-processing oscilloscope. Inset: (a) 375 generated optical carriers; (b) received spectrum of the OFDM signal

Fig.2  

DGD identification through QPSK sequence of (a) all the six modes; (b) one specific mode

Fig.3  

Digital signal processing at the (a) transmitter side and (b) receiver side

Fig.4  

BER performance of PDM-DFTS-OFDM-32QAM in three spatial modes after 1 km FMF transmission

Fig.5  

BER performances of all 375 channels after 1 km FMF transmission. Inset: received optical spectrum and constellations of the recovered OFDM signal

Tab.1  

Summary of high-capacity SMF and FMF transmission

Tab.2  

FMF specifications

Tab.1  
1 Winzer  P J. Modulation and multiplexing in optical communication systems. IEEE LEOS Newsletter, 2009, 23(1): 4–10
2 Fukuchi  K, Kasamatsu  T, Morie  M, Ohhira  R, Ito  T, Sekiya  K, Ogasawara  D, Ono  T. 10.92-Tb/s (273 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experi-ment. In Proceedings of Optical Fiber Communication Conference (OFC) 2001. 2001, Paper PD24
3 Gnauck  A H, Charlet  G, Tran  P, Winzer  P J, Doerr  C R, Centanni  J C, Burrows  E C, Kawanishi  T, Sakamoto  T, Higuma  K. 25.6-Tb/s C+L band transmission of polarization-multiplexed RZ-DQPSK signals. In: Proceedings of Optical Fiber Communication Conference (OFC) 2007. 2007, PD19
4 Zhou  X, Yu  J, Huang  M F, Shao  Y, Wang  T, Nelson  L, Magill  P, Birk  M, Borel  P I, Peckham  D W, Lingle  R Jr. 64-Tb/s (640 ×107-Gb/s) PDM-36 QAM transmission over 320 km using both pre- and post-transmission digital equalization. In: Proceedings of Optical Fiber Communication Conference (OFC) 2010. 2010, PDP B9
5 Qian  D, Huang  M, Ip  E, Huang  Y K, Shao  Y, Hu  J, Wang  T. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands. Journal of Lightwave Technology, 2012, 30(10): 1540–1548
https://doi.org/10.1109/JLT.2012.2189096
6 Sano1  A, Kobayashi  T, Yamanaka  S, Matsuura  A, Kawakami  H, Miyamoto  Y, Ishihara  K, Masuda  H. 102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone. In: Proceedings of Optical Fiber Communication Conference (OFC) 2012. 2012, PDP B5C.3
7 Luo  M, Li  C, Yang  Q, He  Z, Xu  J, Zhang  Z, Yu  S. 100.3-Tb/s(375×267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Proceedings of Asia-Pacific Communications and Photonics Conference (ACP) 2014. 2014, PDP AF4B.1
8 Richardson  D J, Fini  J M, Nelson  L E. Space-division multiplexing in optical fibers. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
9 Krummrich  P M, Petermann  K. Evaluation of potential optical amplifier concepts for coherent mode multiplexing. In: Proceedings of Optical Fiber Communication Conference (OFC) 2012. 2012, Paper OMH5
10 Ip  E, Bai  N, Huang  Y K, Mateo  E, Yaman  F, Li  M J. 88×3×112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier. In: Proceedings of 37th European Conference and Exhibition on Optical Communication (ECOC), 2011. 2011, Paper Th.13.C.2
11 Sleiffer  V, Jung  Y, Veljanovski  V, Uden  R, Kuschnerov  M, Kang  Q, Grüner-Nielsen  L, Sun  Y, Richardson  D, Alam  S, Poletti  F, Sahu  J, Dhar  A, Chen  H, Inan  B, Koonen  T, Corbett  B, Winfield  R, Ellis  A, Waardt  H. 73.7 Tb/s (96×3×256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. In: Proceedings of European Conference and Exhibition on Optical Communication (ECOC) 2012. 2012, Th.3.C.4
12 Ryf  R, Randel  S, Fontaine  N K, Montoliu  M, Burrows  E, Chandrasekhar  S, Gnauck  A H, Xie  C, Essiambre  R, Winzer  P, Delbue  R, Pupalaikis  P, Sureka  A, Sun  Y, Gruner-Nielsen  L, Jensen  R V, Lingle  R. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Optical Fiber Communication Conference (OFC) 2013. 2013, PDP5A.1
13 Ip  E, Li  M J, Huang  Y K, Tanaka  A, Mateo  E, Wood  W, Hu  J Q, Yano  Y, Koreshkov  K. 146λ×6×19-Gbaud wavelength- and mode-division multiplexed transmission over 10×50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. In: Proceedings of Optical Fiber Communication Conference (OFC) 2013. 2013, PDP5A.2
14 Yang  Q, He  Z, Yang  Z, Yu  S, Yi  X, Shieh  W. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing. Optics Express, 2012, 20(3): 2379–2385
https://doi.org/10.1364/OE.20.002379 pmid: 22330476
15 Li  C, Yang  Q, Jiang  T, He  Z, Luo  M, Li  C, Xiao  X, Xue  D, Yi  X, Yu  S. Investigation of coherent optical multi-band DFT-S OFDM in long haul transmission. IEEE Photonics Technology Letters, 2012, 24(19): 1704–1707
https://doi.org/10.1109/LPT.2012.2212882
16 Randel  S, Ryf  R, Sierra  A, Winzer  P J, Gnauck  A H, Bolle  C A, Essiambre  R J, Peckham  D W, McCurdy  A, Lingle  R Jr. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization. Optics Express, 2011, 19(17): 16697–16707
https://doi.org/10.1364/OE.19.016697 pmid: 21935031
17 Liu  X, Buchali  F, Tkach  R W. Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission. Journal of Lightwave Technology, 2009, 27(16): 3632–3640
https://doi.org/10.1109/JLT.2009.2022767
[1] Jianjun YU. Spectrally efficient single carrier 400G optical signal transmission[J]. Front. Optoelectron., 2019, 12(1): 15-23.
[2] Christian CARBONI,Guifang LI. Novel applications of space-division multiplexing[J]. Front. Optoelectron., 2016, 9(2): 270-276.
[3] Dagong JIA, Haiwei ZHANG, Zhe JI, Neng BAI, Guifang LI. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed