Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 270-276    https://doi.org/10.1007/s12200-016-0607-2
RESEARCH ARTICLE
Novel applications of space-division multiplexing
Christian CARBONI1,Guifang LI1,2,*()
1. CREOL, The College of Optics & Photonics, University of Central Florida, Florida 32816-2700, USA
2. College of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China
 Download: PDF(1010 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Space-division multiplexing (SDM) using multi-core fibers (MCFs) and few-mode fibers (FMFs) was proposed as a solution to increase capacity and/or reduce the cost per bit of fiber-optic transmission. Advances in passive and active SDM devices as well as digital signal processing have led to impressive SDM transmission demonstrations in the laboratory. Although the perceived advantages in terms of capacity and cost per bit that SDM offers over parallel SMF bundles are not universally accepted, SDM is beginning to emerge as an indispensable solution in major network segments. The introduction of the spatial degree of freedom allows optical networks to overcome fundamental limitations such as fiber nonlinearity as well practical limitations such as power delivery. We describe these application scenarios that the optical communications industry has already began to explore. From a fundamental science point of view, concepts such as the principal modes, generalized Stokes space, and multi-component solitons discovered in SDM research will likely have a broad impact in other areas of science and engineering.

Keywords space-division multiplexing (SDM)      few-mode fiber (FMF)      multi-core fiber (MCF)      wavelength-selective switch (WSS)      passive optical network (PON)     
Corresponding Author(s): Guifang LI   
Just Accepted Date: 16 March 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Christian CARBONI,Guifang LI. Novel applications of space-division multiplexing[J]. Front. Optoelectron., 2016, 9(2): 270-276.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0607-2
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/270
Fig.1  
Fig.2  An illustration of (a) MDM in a FMF and (b) a MCF for core multiplexing
Fig.3  An illustration of the increased capacity that can be achieved by using FMF in place of SMF [4]
Fig.4  Experimental setups designed to test the transmission capacity of network systems involving (a) entirely SMF, (b) entirely FMF, and (c) a hybrid system utilizing both SMF and FMF [21]
Fig.5  A demonstration of 111 independent channels transmitted in the C-band achieving a spectral efficiency of 6.5 b/s/Hz [21]
Fig.6  An illustration of the aggregation of multiple SMFs into one FMF (point A to point B), and of SDM-compatible components implemented throughout the entire network (points B through E)
Fig.7  Illustrations of PON setups used to eliminate upstream combining loss, (a) demonstrates a proposal that requires the use of multiple SSMF lines and (b) demonstrates an SDM-based design using a MTC and FMF, eliminating the need for multiple fiber lines
Fig.8  A diagram of the 20 km FMF demonstration using commercially available GPON equipment [6]
Fig.9  Plots of the data gathered pertaining to (a) BER vs. received power and (b) packet loss while testing the 20 km mode-selective PON
1 Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
2 Ip E, Bai N, Huang Y K, Mateo E, Yaman F, Bickham S, Tam H Y, Lu C, Li M J, Ten S, Lau A P T, Tse V, Peng G D, Montero C, Prieto X, Li G. 88×3×112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier. In: Proceedings of 37th European Conference and Exposition on Optical Communications (Geneva). 2011, p.Th.13.C.12
3 Winzer P J. Optical networking beyond WDM. IEEE Photonics Journal, 2012, 4(2): 647–651
https://doi.org/10.1109/JPHOT.2012.2189379
4 Zhu B, Liu X, Chandrasekhar S, Taunay T, Fishteyn M, Yan M, Fini J M, Monberg E, Dimarcello F. 112-Tb/s (7×160×107Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber. In: Proceedings of European Conference and Exposition on Optical Communications. 2011, p.Tu.5.B.5
5 Antonelli C, Mecozzi A, Shtaif M, Winzer P J. Stokes-space analysis of modal dispersion in fibers with multiple mode transmission. Optics Express, 2012, 20(11): 11718–11733
https://doi.org/10.1364/OE.20.011718 pmid: 22714160
6 Fan S, Kahn J M. Principal modes in multimode waveguides. Optics Letters, 2005, 30(2): 135–137
https://doi.org/10.1364/OL.30.000135 pmid: 15675691
7 Mecozzi A, Antonelli C, Shtaif M. Nonlinear propagation in multi-mode fibers in the strong coupling regime. Optics Express, 2012, 20(11): 11673–11678
https://doi.org/10.1364/OE.20.011673 pmid: 22714154
8 Grüner-Nielsen L, Sun Y, Jensen R V S, Nicholson J W, Lingle R. Recent advances in low DGD few-mode fibre design, fabrication, characterization and experiments. In: Proceedings of Optical Fiber Communication Conference. 2015, p.M2C.3
9 Takahashi H, Igarashi K, Tsuritani T. Long-haul transmission using multicore fibers. In: Proceedings of Optical Fiber Communication Conference (San Francisco, California). 2014, p. Tu2J.2
10 Leon-Saval S G, Fontaine N K, Salazar-Gil J R, Ercan B, Ryf R, Bland-Hawthorn J. Mode-selective photonic lanterns for space-division multiplexing. Optics Express, 2014, 22(1): 1036–1044
https://doi.org/10.1364/OE.22.001036 pmid: 24515063
11 Bai N, Ip E, Wang T, Li G. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Optics Express, 2011, 19(17): 16601–16611
https://doi.org/10.1364/OE.19.016601 pmid: 21935024
12 Abedin K S, Taunay T F, Fishteyn M, DiGiovanni D J, Supradeepa V R, Fini J M, Yan M F, Zhu B, Monberg E M, Dimarcello F V. Cladding-pumped erbium-doped multicore fiber amplifier. Optics Express, 2012, 20(18): 20191–20200
https://doi.org/10.1364/OE.20.020191 pmid: 23037071
13 Jung Y, Lim E L, Kang Q, May-Smith T C, Wong N H, Standish R, Poletti F, Sahu J K, Alam S U, Richardson D J. Cladding pumped few-mode EDFA for mode division multiplexed transmission. Optics Express, 2014, 22(23): 29008–29013
https://doi.org/10.1364/OE.22.029008 pmid: 25402139
14 Fontaine N K, Ryf R, Liu C, Ercan B, Salazar Gil J R, Leon-Saval S G, Bland-Hawthorn J, Neilson D T. Few-mode fiber wavelength selective switch with spatial-diversity and reduced-steering angle. In: Proceedings of Optical Fiber Communication Conference. 2014, p.Th4A.7
15 Takeshima K, Tsuritani T, Tsuchida Y, Maeda K, Watanabe K, Sasa T, Imamura K, Sugizaki R, Igarashi K, Morita I, Suzuki M. 51.1-Tbit/s MCF transmission over 2520 km using cladding pumped 7-core EDFAs. In: Proceedings of Optical Fiber Communications Conference and Exhibition. 2015, pp. W3G–1
16 Fontaine N K, Ryf R, Chen H, Benitez A V, Guan B, Scott R, Ercan B, Yoo S J B, Grüner-Nielsen L E, Sun Y, Lingle R, Antonio-Lopez E, Amezcua-Correa R. 30×30 MIMO transmission over 15 spatial modes. In: Proceedings of Optical Fiber Communication Conference Post Deadline Papers. 2015, p.Th5C.1
17 Li G, Bai N, Zhao N, Xia C. Space-division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics, 2014, 6(4): 413–487
https://doi.org/10.1364/AOP.6.000413
18 Bergano N. Undersea fiber optic cables – enabling a connected world. In: Proceedings of Optical Fiber Communications Conference. 2015, p.Tu1A.2
19 Zhang H, Turukhin A, Sinkin O V, Patterson W, Batshon H G, Sun Y, Davidson C R, Mazurczyk M, Mohs G, Foursa D G, Pilipetskii A. Power-efficient 100 Gb/s transmission over transoceanic distance using 8-dimensional coded modulation. In: Proceedings of 2015 European Conference on Optical Communication (ECOC). 2015, 1–3
20 Yaman F, Bai N, Zhu B, Wang T, Li G. Long distance transmission in few-mode fibers. Optics Express, 2010, 18(12): 13250–13257
https://doi.org/10.1364/OE.18.013250 pmid: 20588454
21 Yaman F, Zhang S, Huang Y K, Ip E ,Downie J D, Wood W A, Zakharian A, Mishra S K, Hurley J E , Zhang Y, Djordjevic I B, Huang M F, Mateo E, Nakamura K, Inoue T , Inada Y, Ogata T. First quasi-single-mode transmission over transoceanic distance using few-mode fibers. In: Proceedings of Optical Fiber Communication Conference Post Deadline Papers (Los Angeles, California). 2015, p. Th5C.7
22 Wen H, Zheng H, Zhu B, Li G. Experimental demonstration of long-distance analog transmission over few-mode fibers. In: Proceedings of Optical Fiber Communication Conference (Los Angeles, California). 2015, p. M3E.2
23 Marom D M, Dunayevsky J, Sinefeld D, Blau M, Ryf R, Fontaine N K, Montoliu M, Randel S, Liu C, Ercan B, Esmaeelpour M, Chandrasekhar S, Gnauck A H, Leon-Saval S G, Bland-Hawthorn J, Salazar-Gil J R, Sun Y, Grüner-Nielsen L, Lingle R. Wavelength-selective switch with direct few mode fiber integration. Optics Express, 2015, 23(5): 5723–5737
https://doi.org/10.1364/OE.23.005723 pmid: 25836802
24 Ning C, Zhenxing L, Effenberger F J. Large splitting and long reach passive optical networks with mode coupling receivers. In: Proceedings of 2010 36th European Conference and Exhibition on Optical Communication (ECOC). 2010, 1–3
25 Xia C, Chand N, Velázquez-Benítez A M, Yang Z, Liu X, Antonio-Lopez J E, Wen H, Zhu B, Zhao N, Effenberger F, Amezcua-Correa R, Li G. Time-division-multiplexed few-mode passive optical network. Optics Express, 2015, 23(2): 1151–1158
https://doi.org/10.1364/OE.23.001151 pmid: 25835875
[1] Love KUMAR, Amarpal SINGH, Vishal SHARMA. Analysis on multiple optical line terminal passive optical network based open access network[J]. Front. Optoelectron., 2019, 12(2): 208-214.
[2] Dechao ZHANG,Han LI,Lei WANG,Liang GENG,Shiguang WANG,Sheng LIU,Yang GAO. Variable optical splitter based on wavelength-sensitive components and related intelligent passive optical network[J]. Front. Optoelectron., 2017, 10(1): 57-61.
[3] Ming LUO,Qi MO,Xiang LI,Rong HU,Ying QIU,Cai LI,Zhijian LIU,Wu LIU,Huang YU,Wei DU,Jing XU,Zhixue HE,Qi YANG,Shaohua YU. Transmission of 200 Tb/s (375 × 3 × 178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF[J]. Front. Optoelectron., 2015, 8(4): 394-401.
[4] Dagong JIA, Haiwei ZHANG, Zhe JI, Neng BAI, Guifang LI. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
[5] Duan LIU, Songnian FU, Ming TANG, Ping SHUM, Deming LIU. Rayleigh backscattering noise in single-fiber loopback duplex WDM-PON architecture[J]. Front Optoelec, 2012, 5(4): 435-438.
[6] Kang YANG, Minming ZHANG, Deming LIU, Lei DENG. Design and evaluation of scheduling algorithms for TDM/WDM PON based on RSOA[J]. Front Optoelec Chin, 2011, 4(2): 217-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed