Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 491-498    https://doi.org/10.1007/s12200-020-1069-0
RESEARCH ARTICLE
Improved stability of blue TADF organic electroluminescent diodes via OXD-7 based mixed host
Weiguang LI1,2, Jie TANG1,2, Yanqiong ZHENG1(), Junbiao PENG3, Jianhua ZHANG1, Bin WEI1(), Xifeng LI1
1. Key Laboratory of Advanced Display and System Applications of Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
2. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
3. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
 Download: PDF(1595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) have been demonstrated in applications such as displays and solid-state lightings. However, weak stability and inefficient emission of blue TADF OLEDs are two key bottlenecks limiting the development of solution processable displays and white light sources. This work presents a solution-processed OLED using a blue-emitting TADF small molecule bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) as an emitter. We comparatively investigated the effects of single host poly(N-vinylcarbazole) (PVK) and a co-host of 60% PVK and 30% 2,2′-(1,3-phenylene)-bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] (OXD-7) on the device performance (the last 10% is emitter DMAC-DPS). The co-host device shows lower turn-on voltage, similar maximum luminance, and much slower external quantum efficiency (EQE) roll-off. In other words, device stability improved by doping OXD-7 into PVK, and the device impedance simultaneously and significantly reduced from 8.6 × 103 to 4.2 × 103 W at 1000 Hz. Finally, the electroluminescent stability of the co-host device was significantly enhanced by adjusting the annealing temperature.

Keywords blue thermally activated delayed fluorescence organic light-emitting diode (TADF OLED)      2,2′-(1,3-phenylene)-bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] (OXD-7)      bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS)      stability     
Corresponding Author(s): Yanqiong ZHENG,Bin WEI   
Just Accepted Date: 05 November 2020   Online First Date: 27 November 2020    Issue Date: 06 December 2021
 Cite this article:   
Weiguang LI,Jie TANG,Yanqiong ZHENG, et al. Improved stability of blue TADF organic electroluminescent diodes via OXD-7 based mixed host[J]. Front. Optoelectron., 2021, 14(4): 491-498.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1069-0
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/491
Fig.1  (a) Molecular structures of PEDOT:PSS, DMAC-DPS, PVK, Bphen, OXD-7, and DPEPO. (b) Energy-level diagram of the co-host device. PL spectra of the pristine 40 nm DMAC-DPS film (c) and EML blend films (40 nm) with single host and co-host via annealing at 80°C and 100°C, respectively (d) on quartz substrates
Fig.2  AFM surface topographic and 3D images for different EML blend films on ITO substrates. (a) PVK:OXD-7:DMAC-DPS EML annealed at 80°C for 30 min. (b) PVK:OXD-7:DMAC-DPS EML annealed at 100°C. (c) PVK:DMAC-DPS EML annealed at 80°C. (d) PVK:DMAC-DPS EML annealed at 100°C
Fig.3  EL characteristics of the TADF devices with PVK:DMAC-DPS or PVK:OXD-7:DMAC-DPS EML by spin-coating at 3000 r/min for 30 s or 60 s and annealing at 80°C for 30 min. (a) Current density-voltage-luminance (J-V-L). (b) Current efficiency (CE)-luminance. (c) Power efficiency (PE)-luminance, inset of (c) is the corresponding EL spectra. (d) EQE-current density, inset of (d) is the normalized EQE spectra
host time/s Lmax/(cd·m2) CEmax/(cd·cm2) PEmax/(lm·W1) EQEmax/%
PVK 30 228 2.08 1.18 1.37
PVK 60 217 1.63 0.85 1.12
PVK:OXD-7 (6:3, wt%) 30 207 0.59 0.41 0.51
PVK:OXD-7 (6:3, wt%) 60 238 0.46 0.29 0.40
Tab.1  EL characteristics of ITO/PEDOT:PSS (30 nm)/host:DMAC-DPS (15 nm)/DPEPO (10 nm)/Bphen (30 nm)/LiF (0.8 nm)/Al (80 nm) with various EMLs by spin-coating at 3000 r/min for 30 s or 60 s via annealing at 80°C for 30 min
Fig.4  EL characteristics of TADF devices with PVK:OXD-7:DMAC-DPS EML via spin-coating at 2000 r/min for 30 s. (a) Current density-voltage-luminance (J-V-L). (b) Current efficiency (CE)-luminance. (c) Power efficiency (PE)-luminance. (d) EQE-current density, inset of (d) is the corresponding EL spectra
T/°C Lmax/(cd·m2) Vturn-ona/V CEmax/(cd·cm2) PEmax/(lm·W1) EQEmax/%
80 36.5 7.5 3.15 1.17 1.41
100 243 5.8 2.32 0.82 1.31
Tab.2  EL characteristics of ITO/PEDOT:PSS (30 nm)/PVK:OXD-7:DMAC-DPS (6:3:1, wt%, 20 nm)/DPEPO (10 nm)/Bphen (30 nm)/LiF (0.8 nm)/Al (80 nm) at various annealing temperatures (T) for the EML by spin-coating at 2000 r/min for 30 s
Fig.5  Impedance spectroscopy characteristics (Z-f and φ-f) for the TADF OLEDs with hosts of PVK:OXD-7, PVK, and OXD-7, respectively
1 C W Tang, S A Vanslyke. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
https://doi.org/10.1063/1.98799
2 F M Xie, Z D An, M Xie, Y Q Li, G H Zhang, S J Zou, L Chen, J D Chen, T Cheng, J X Tang. Tert-butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2020, 8(17): 5769–5776
https://doi.org/10.1039/D0TC00718H
3 H J Kim, M Godumala, S K Kim, J Yoon, C Y Kim, H Park, J H Kwon, M J Cho, D H Choi. Color-tunable boron-based emitters exhibiting aggregation-induced emission and thermally activated delayed fluorescence for efficient solution-processable nondoped deep-blue to sky-blue OLEDs. Advanced Optical Materials, 2020, 8(14): 1902175
https://doi.org/10.1002/adom.201902175
4 K Matsuo, T Yasuda. Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs. Chemical Science (Cambridge), 2019, 10(46): 10687–10697
https://doi.org/10.1039/C9SC04492B pmid: 32206251
5 C L Yi, C L Ko, T C Yeh, C Y Chen, Y S Chen, D G Chen, P T Chou, W Y Hung, K T Wong. Harnessing a new co-host system and low concentration of new TADF emitters equipped with trifluoromethyl- and cyano-substituted benzene as core for high-efficiency blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12(2): 2724–2732
https://doi.org/10.1021/acsami.9b18272 pmid: 31846297
6 Q Wang, Q S Tian, Y L Zhang, X Tang, L S Liao. High-efficiency organic light-emitting diodes with exciplex hosts. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(37): 11329–11360
https://doi.org/10.1039/C9TC03092A
7 Q S Zhang, B Li, S P Huang, H Nomura, H Tanaka, C Adachi. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014, 8(4): 326–332
https://doi.org/10.1038/nphoton.2014.12
8 Q Zhang, D Tsang, H Kuwabara, Y Hatae, B Li, T Takahashi, S Y Lee, T Yasuda, C Adachi. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Advanced Materials, 2015, 27(12): 2096–2100
https://doi.org/10.1002/adma.201405474 pmid: 25678335
9 C Duan, C Fan, Y Wei, F Han, W Huang, H Xu. Optimizing the intralayer and interlayer compatibility for high-efficiency blue thermally activated delayed fluorescence diodes. Scientific Reports, 2016, 6(1): 19904
https://doi.org/10.1038/srep19904 pmid: 26822524
10 H Yang, Q Q Liang, C M Han, J Zhang, H Xu. A posphanthrene oxide host with close sphere packing for ultralow-voltage-driven efficient blue thermally activated delayed fluorescence diodes. Advanced Materials, 2017, 29(38): 1700553
https://doi.org/10.1002/adma.201700553
11 Z Zhang, D X Ding, Y Wei, J Zhang, C M Han, H Xu. Excited-state engineering of universal ambipolar hosts for highly efficient blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes. Chemical Engineering Journal, 2020, 382: 122485
https://doi.org/10.1016/j.cej.2019.122485
12 F F Gao, R M Du, F X Jiao, G Lu, J Zhang, C M Han, H Xu. A novel bridge-ring phosphine oxide host 5,10-[1,2]benzenophosphanthrene 5,10-dioxide for ultralow-voltage-driven blue thermally activated delayed fluorescence diodes. Advanced Optical Materials, 2020, 8(13): 2000052
https://doi.org/10.1002/adom.202000052
13 J Zhang, D Ding, Y Wei, F Han, H Xu, W Huang. Multiphosphine-oxide hosts for ultralow-voltage-driven true-blue thermally activated delayed fluorescence diodes with external quantum efficiency beyond 20%. Advanced Materials, 2016, 28(3): 479–485
https://doi.org/10.1002/adma.201502772 pmid: 26588189
14 X S Cao, Z X Chen, S L Gong, K Pan, C J Zhou, T Huang, D Y Chai, Q Zhan, N Q Li, Y Zou, H Liu, C L Yang. Designing versatile sulfoximine as accepting unit to regulate the photophysical properties of TADF emitters towards high-performance OLEDs. Chemical Engineering Journal, 2020, 399: 125648
https://doi.org/10.1016/j.cej.2020.125648
15 Z Wu, Y Liu, L Yu, C Zhao, D Yang, X Qiao, J Chen, C Yang, H Kleemann, K Leo, D Ma. Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes. Nature Communications, 2019, 10(1): 2380
https://doi.org/10.1038/s41467-019-10104-4 pmid: 31147542
16 J Zhao, Z J Wang, R Wang, Z G Chi, J S Yu. Hybrid white organic light-emitting devices consisting of a non-doped thermally activated delayed fluorescent emitter and an ultrathin phosphorescent emitter. Journal of Luminescence, 2017, 184: 287–292
https://doi.org/10.1016/j.jlumin.2016.11.067
17 J Yang, S L Zhao, D D Song, Z Xu, B Qiao, P Wang, P Wei. Highly efficient solution processed blue thermally activated delayed fluorescent organic light-emitting devices with a mixed hole injection layer. Spectroscopy and Spectral Analysis, 2020, 40(4): 1028–1033
18 J Yang, D Song, S Zhao, B Qiao, Z Xu, P Wang, P Wei. Highly efficient and bright blue organic light-emitting devices based on solvent engineered, solution-processed thermally activated delayed fluorescent emission layer. Organic Electronics, 2019, 71: 1–6
https://doi.org/10.1016/j.orgel.2019.04.032
19 J Kido, K Hongawa, K Okuyama, K Nagai. Bright blue electroluminescence from poly(N-vinylcarbazole). Applied Physics Letters, 1993, 63(19): 2627–2629
https://doi.org/10.1063/1.110402
20 I Hladka, R Lytvyn, D Volyniuk, D Gudeika, J V Grazulevicius. W-shaped bipolar derivatives of carbazole and oxadiazole with high triplet energies for electroluminescent devices. Dyes and Pigments, 2018, 149: 812–821
21 Z H Zhang, W Jiang, X X Ban, M Yang, S H Ye, B Huang, Y M Sun. Solution-processed efficient deep-blue fluorescent organic light-emitting diodes based on novel 9,10-diphenyl-anthracene derivatives. RSC Advances, 2015, 5(38): 29708–29717
22 K F Jeltsch, G Lupa, R T Weitz. Materials depth distribution and degradation of a FIrpic based solution-processed blue OLED. Organic Electronics, 2015, 26: 365–370
23 V Jankus, K Abdullah, G C Griffiths, H Al-Attar, Y H Zheng, M R Bryce, A P Monkman. The role of exciplex states in phosphorescent OLEDs with poly(vinylcarbazole) (PVK) host. Organic Electronics, 2015, 20: 97–102
https://doi.org/10.1016/j.orgel.2015.02.002
24 E Girotto, A Pereira, C Arantes, M Cremona, A J Bortoluzzi, C A M Salla, I H Bechtold, H Gallardo. Efficient terbium complex based on a novel pyrazolone derivative ligand used in solution-processed OLEDs. Journal of Luminescence, 2019, 208: 57–62
https://doi.org/10.1016/j.jlumin.2018.12.027
25 Q Zhang, X W Zhang, B Wei. Highly efficient ultraviolet organic light-emitting diodes and interface study using impedance spectroscopy. Optik (Stuttgart), 2015, 126(18): 1595–1597
https://doi.org/10.1016/j.ijleo.2015.05.091
26 C F Si, G Chen, K P Guo, S H Pan, C Y Peng, B Wei. Enhanced performance in inverted organic light-emitting diodes using Li ion doped ZnO cathode buffer layer. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2017, 651(1): 118–125
https://doi.org/10.1080/15421406.2017.1338067
27 J Moon, H Cho, M J Maeng, K Choi, D T Nguyen, J H Han, J W Shin, B H Kwon, J Lee, S Cho, J I Lee, Y Park, J S Lee, N S Cho. Mechanistic understanding of improved performance of graphene cathode inverted organic light-emitting diodes by photoemission and impedance spectroscopy. ACS Applied Materials & Interfaces, 2018, 10(31): 26456–26464
https://doi.org/10.1021/acsami.8b07751 pmid: 30010310
28 A V Voitsekhovskii, S N Nesmelov, S M Dzyadukh, T N Kopylova, K M Degtyarenko. Impedance characterization of organic light-emitting structures with thermally activated delayed fluorescence. Physica Status Solidi A, Applications and Materials Science, 2020, 217(6): 1900847
https://doi.org/10.1002/pssa.201900847
29 M Gao, T Lee, P L Burn, A E Mark, A Pivrikas, P E Shaw. Revealing the interplay between charge transport, luminescence efficiency, and morphology in organic light-emitting diode blends. Advanced Functional Materials, 2020, 30(9): 1907942
https://doi.org/10.1002/adfm.201907942
[1] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[2] Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed