Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 407-413    https://doi.org/10.1007/s12200-020-1109-9
RESEARCH ARTICLE
Design of hollow core step-index antiresonant fiber with stepped refractive indices cladding
Botao DENG1, Chaotan SIMA1(), Hongyu TAN1, Xiaohang ZHANG1, Zhenggang LIAN2, Guoqun CHEN2, Qianqing YU2, Jianghe XU2, Deming LIU1
1. Next Generation Internet Access National Engineering Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Yangtze Optical Electronics Co., Ltd. (YOEC), Wuhan 430205, China
 Download: PDF(873 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the benefits of low latency, wide transmission bandwidth, and large mode field area, hollow-core antiresonant fiber (HC-ARF) has been a research hotspot in the past decade. In this paper, a hollow core step-index antiresonant fiber (HC-SARF), with stepped refractive indices cladding, is proposed and numerically demonstrated with the benefits of loss reduction and bending improvement. Glass-based capillaries with both high (n = 1.45) and low (as low as n = 1.36) refractive indices layers are introduced and formatted in the cladding air holes. Using the finite element method to perform numerical analysis of the designed fiber, results show that at the laser wavelengths of 980 and 1064 nm, the confinement loss is favorably reduced by about 6 dB/km compared with the conventional uniform cladding HC-ARF. The bending loss, around 15 cm bending radius of this fiber, is also reduced by 2 dB/km. The cladding air hole radius in this fiber is further investigated to optimize the confinement loss and the mode field diameter with single-mode transmission behavior. This proposed HC-SARF has great potential in optical fiber transmission and high energy delivery.

Keywords antiresonant fiber (ARF)      stepped refractive indices      confinement loss      bending loss      laser pumping     
Corresponding Author(s): Chaotan SIMA   
Just Accepted Date: 09 December 2020   Online First Date: 05 January 2021    Issue Date: 06 December 2021
 Cite this article:   
Botao DENG,Chaotan SIMA,Hongyu TAN, et al. Design of hollow core step-index antiresonant fiber with stepped refractive indices cladding[J]. Front. Optoelectron., 2021, 14(4): 407-413.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1109-9
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/407
Fig.1  Longitudinal structure schematic of the stepped refractive index HC-ARF based on the ARROW model
Fig.2  Cross section of HC-SARF with stepped high and low refractive indices cladding. (a) Overall transverse geometry. (b) Enlarged stepped indices area
Fig.3  Fundamental mode field distribution of the designed HC-SARF with stepped refractive indices cladding. (a) Two-dimensional image. (b) Three-dimensional profile
Fig.4  Confinement loss with respect to wavelength for the designed HC-SARF with different indices contrast
Fig.5  Fundamental mode field distribution of the bending HC-SARF in the x-axis orientation
Fig.6  Bending loss with respect to bending radius for the designed HC-SARF. (a) Between 8 and 20 cm. (b) Enlarged section between 14 and 20 cm
Fig.7  Fundamental mode confinement loss with respect to cladding air hole radius r for the designed HC-SARF
Fig.8  Mode effective refractive index neff of the core and cladding mode. (a) Relationship with wavelengths for r = 11, 12, and 13 cm. (b) Detailed neff contrast between LP11-core and LP01-cladding
Fig.9  Fundamental mode field diameter with respect to cladding air hole radius for the designed HC-SARF
1 Y Y Wang, N V Wheeler, F Couny, P J Roberts, F Benabid. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Optics Letters, 2011, 36(5): 669–671
https://doi.org/10.1364/OL.36.000669 pmid: 21368943
2 Y Wang, G Yan, Z Lian, C Wu, S He. Liquid-level sensing based on a hollow core Bragg fiber. Optics Express, 2018, 26(17): 21656–21663
https://doi.org/10.1364/OE.26.021656 pmid: 30130868
3 W Jin, J Ju, H L Ho, Y L Hoo, A L Zhang. Photonic crystal fibers, devices, and applications. Frontiers of Optoelectronics, 2013, 6(1): 3–24
https://doi.org/10.1007/s12200-012-0301-y
4 W Chen, J Y Li, P X Lu. Progress of photonic crystal fibers and their applications. Frontiers of Optoelectronics, 2009, 2(1): 50–57
https://doi.org/10.1007/s12200-009-0002-3
5 J C Knight. What do you see in photonic crystal fibers? Frontiers of Optoelectronics in China, 2010, 3(1): 2–8
https://doi.org/10.1007/s12200-009-0087-8
6 N M Litchinitser, A K Abeeluck, C Headley, B J Eggleton. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 2002, 27(18): 1592–1594
https://doi.org/10.1364/OL.27.001592 pmid: 18026511
7 L Vincetti, V Setti. Waveguiding mechanism in tube lattice fibers. Optics Express, 2010, 18(22): 23133–23146
https://doi.org/10.1364/OE.18.023133 pmid: 21164654
8 F Benabid, J C Knight, G Antonopoulos, P S J Russell. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399–402
https://doi.org/10.1126/science.1076408 pmid: 12376698
9 F Couny, F Benabid, P S Light. Large-pitch kagome-structured hollow-core photonic crystal fiber. Optics Letters, 2006, 31(24): 3574–3576
https://doi.org/10.1364/OL.31.003574 pmid: 17130907
10 B Debord, M Alharbi, A Benoît, D Ghosh, M Dontabactouny, L Vincetti, J M Blondy, F Gérôme, F Benabid. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications. Optics Letters, 2014, 39(21): 6245–6248
https://doi.org/10.1364/OL.39.006245 pmid: 25361325
11 N V Wheeler, T D Bradley, J R Hayes, M A Gouveia, S Liang, Y Chen, S R Sandoghchi, S M Abokhamis Mousavi, F Poletti, M N Petrovich, D J Richardson. Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR. Optics Letters, 2017, 42(13): 2571–2574
https://doi.org/10.1364/OL.42.002571 pmid: 28957287
12 A D Pryamikov, A S Biriukov, A F Kosolapov, V G Plotnichenko, S L Semjonov, E M Dianov. Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region>3.5 mm. Optics Express, 2011, 19(2): 1441–1448
https://doi.org/10.1364/OE.19.001441 pmid: 21263685
13 F Yu, J C Knight. Spectral attenuation limits of silica hollow core negative curvature fiber. Optics Express, 2013, 21(18): 21466–21471
https://doi.org/10.1364/OE.21.021466 pmid: 24104021
14 L Vincetti, V Setti. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes. Optics Express, 2012, 20(13): 14350–14361
https://doi.org/10.1364/OE.20.014350 pmid: 22714496
15 B Debord, A Amsanpally, M Chafer, A Baz, M Maurel, J M Blondy, E Hugonnot, F Scol, L Vincetti, F Gérôme, F Benabid. Ultralow transmission loss in inhibited-coupling guiding hollow fibers. Optica, 2017, 4(2): 209–217
https://doi.org/10.1364/OPTICA.4.000209
16 M I Hasan, N Akhmediev, W Chang. Positive and negative curvatures nested in an antiresonant hollow-core fiber. Optics Letters, 2017, 42(4): 703–706
https://doi.org/10.1364/OL.42.000703 pmid: 28198844
17 S F Gao, Y Y Wang, W Ding, D L Jiang, S Gu, X Zhang, P Wang. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss. Nature Communications, 2018, 9(1): 2828
https://doi.org/10.1038/s41467-018-05225-1 pmid: 30026464
18 H Sakr, Y Hong, T D Bradley, G T Jasion, J R Hayes, H Kim, I A Davidson, E Numkam Fokoua, Y Chen, K R H Bottrill, N Taengnoi, N V Wheeler, P Petropoulos, D J Richardson, F Poletti. Interband short reach data transmission in ultrawide bandwidth hollow core fiber. Journal of Lightwave Technology, 2020, 38(1): 159–165
https://doi.org/10.1109/JLT.2019.2943178
19 J R Hayes, E N Fokoua, M N Petrovich, D J Richardson, F Poletti, S R Sandoghchi, T D Bradley, Z X Liu, R Slavik, M A Gouveia, N V Wheeler, G Jasion, Y Chen. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications. Journal of Lightwave Technology, 2017, 35(3): 437–442
https://doi.org/10.1109/JLT.2016.2638205
20 W Belardi, F De Lucia, F Poletti, P J Sazio. Composite material hollow antiresonant fibers. Optics Letters, 2017, 42(13): 2535–2538
https://doi.org/10.1364/OL.42.002535 pmid: 28957278
21 M J Weber, C F Cline, W L Smith, D Milam, D Heiman, R W Helpworth. Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses. Applied Physics Letters, 1978, 32(7): 403–405
https://doi.org/10.1063/1.90084
22 W Belardi, J C Knight. Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers. Optics Express, 2013, 21(19): 21912–21917
https://doi.org/10.1364/OE.21.021912 pmid: 24104083
23 V Setti, L Vincetti, A Argyros. Flexible tube lattice fibers for terahertz applications. Optics Express, 2013, 21(3): 3388–3399
https://doi.org/10.1364/OE.21.003388 pmid: 23481799
[1] Jinmin Ding, Fanchao Meng, Xiaoting Zhao, Xin Wang, Shuqin Lou, Xinzhi Sheng, Luyun Yang, Guangming Tao, Sheng Liang. All-solid anti-resonant single crystal fibers[J]. Front. Optoelectron., 2022, 15(1): 3-.
[2] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[3] Saeed OLYAEE,Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber[J]. Front. Optoelectron., 2015, 8(3): 314-318.
[4] Weisong YANG, Yipei WANG, Yaoguang MA, Chao MENG, Xiaoqin WU, Qing YANG. Lasing characteristics of curved semiconductor nanowires[J]. Front Optoelec, 2013, 6(4): 448-451.
[5] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed