Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 170-186    https://doi.org/10.1007/s12200-021-1201-9
REVIEW ARTICLE
Metalenses: from design principles to functional applications
Xiao FU1, Haowen LIANG1,2(), Juntao Li1
1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
 Download: PDF(6678 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lens is a basic optical element that is widely used in daily life, such as in cameras, glasses, and microscopes. Conventional lenses are designed based on the classical refractive optics, which results in inevitable imaging aberrations, such as chromatic aberration, spherical aberration and coma. To solve these problems, conventional imaging systems impose multiple curved lenses with different thicknesses and materials to eliminate these aberrations. As a unique photonic technology, metasurfaces can accurately manipulate the wavefront of light to produce fascinating and peculiar optical phenomena, which has stimulated researchers’ extensive interests in the field of planar optics. Starting from the introduction of phase modulation methods, this review summarizes the design principles and characteristics of metalenses. Although the imaging quality of existing metalenses is not necessarily better than that of conventional lenses, the multi-dimensional and multi-degree-of-freedom control of metasurfaces provides metalenses with novel functions that are extremely challenging or impossible to achieve with conventional lenses.

Keywords metalens      achromatic aberration      phase modulation      wavefront manipulation     
Corresponding Author(s): Haowen LIANG   
Just Accepted Date: 03 March 2021   Online First Date: 12 April 2021    Issue Date: 14 July 2021
 Cite this article:   
Xiao FU,Haowen LIANG,Juntao Li. Metalenses: from design principles to functional applications[J]. Front. Optoelectron., 2021, 14(2): 170-186.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1201-9
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/170
Fig.1  Schematic diagram of three phase modulation methods, i.e., resonance phase modulation ((a) and (b)), geometric phase modulation ((c) and (d)), and propagation phase modulation ((e) and (f)). (a) Simulated phase shift of the scattered light for V-antennas with various length h and angle between the rods Δ. (b) Schematic diagram of ordinary and anomalous reflection and refraction for y-polarized excitation. (c) Schematic diagram of a representative meta-atom array considered as model in the simulation. Bottom right: excitation of dipole moment when illuminating one meta-atom. (d) Schematic diagram of ordinary and anomalous refraction when illuminated with left- and right-circularly polarized light, respectively. (e) Side-view scanning electron microscope (SEM) image of a propagation phase-modulated metasurface. An array of nanopillars is indicated by red rectangle. (f) Schematic diagram of focusing a light pulse to the focal distance of a propagation phase-modulated metalens. The time-dependent electric field plots demonstrate that the light passing through the different parts of the metalens requires equal phase delay to arrive at the focal point without dispersion. (a) and (b) Reproduced with permission from Ref. [28]. (c) and (d) Reproduced with permission from Ref. [34]. (e) Reproduced with permission from Ref. [35]. (f) Reproduced with permission from Ref. [36]
Fig.2  (a) Top: schematic diagram of meta-atoms. Bottom: finite difference time-domain (FDTD) simulations of the scattered electric field of the periodic array composed of individual antennas shown above. (b) Schematic diagram of the combination of propagation and geometric phases. (a) Reproduced with permission from Ref. [28]. (b) Reproduced with permission from Ref. [87]
Fig.3  (a) SEM micrograph of the fabricated metalens. Wavelength= 532 nm. (c) Picture of the Nikon objective lens (100× CFI60, NA= 0.8). (b) and (d) Measured focal spot intensity profiles of the metalens in (a) and the commercial objective lens in (c) at the wavelength of 532 nm. (a), (b), and (d) Reproduced with permission from Ref. [68]. (c) From the Nikon website
Fig.4  Multi-wavelength achromatic metalenses. (a) False colored SEM image of achromatic metalens. Inset: schematic side view of metalens designed to focus three different wavelengths into the same focal plane. (b) Schematic diagram of one integrated-resonant unit cell of the broadband achromatic metalens for the incident wavelengths varying from 1200 to 1680 nm. (c) Phase spectra for five different elements schematically shown on the right. The shaded region indicates the design bandwidth of 120 nm. (d) Calculated phase ϕ0 and dispersion Δϕ=dϕdω Δω for the meta-atom library schematically shown in the inset. (e) Calculated neff for all designed meta-atoms. The meta-atoms schematically shown in the inset are chosen to compose the broadband achromatic metalens by selecting the maximum Δneff. (a) Reproduced with permission from Ref. [102]. (b) Reproduced with permission from Ref. [88]. (c) Reproduced with permission from Ref. [89]. (d) Reproduced with permission from Ref. [104]. (e) Reproduced with permission from Ref. [105]
radius/mm NA wavelength range/nm Δω/Hz minimum Δ Φ/p focal length/mm material focusing efficiency comment Ref.
27.775 0.268 1200–1680 7.14 × 1013 0.29 100 Au 12% reflection scheme [88]
220 0.02 470–670 1.91 × 1014 0.44 63 TiO2 20% [89]
750 0.075 475–700 2.03 × 1014 N/A* 9960 TiO2 35% refractive lens and metacorrector with air gap [90]
50 0.24 1300–1650 4.90 × 1013 0.32 200 amorphous silicon 20%–58% [104]
50 0.24 1200–1650 6.82 × 1013 0.44 200
100 0.13 1200–1650 6.82 × 1013 0.47 800
50 0.88 1200–1400 3.57 × 1013 1.13 30 N/A
25 0.106 400–660 2.95 × 1014 0.42 235 GaN 40% [106]
16.67 0.36 1310–1550 3.55 × 1013 0.12 38 Si 50.07%–55.53% theoretical work [109]
13.2 0.2 460–700 2.24 × 1014 0.32 67 TiO2 30% [110]
7 0.086 430–780 3.13 × 1014 0.10 81.5 SiN 36%–55% [105]
32 0.81 1470–1590 1.54 × 1013 0.27 22.95 Si 21%–27% theoretical work [112]
6.25 0.1 450–700 2.38 × 1014 0.08 60 TiO2 43%–78% theoretical work [113]
0.9 0.99 3 13%–32%
0.99 1.37 0.9 23%–36%
Tab.1  Summary of broadband achromatic metalenses
Fig.5  Simulated maximum focusing efficiency of a metalens designed by the unit-cell approach for diffraction order Nd is equal to 1 (black), 3 (red), and 5 (blue), respectively. Inset: maximum efficiency as a function of unit-cell periods L divided by the wavelength l. Reproduced with permission from Ref. [113]
Fig.6  High-resolution metalenses. Vertical cuts of the measured focal spot intensity profile of the metalens designed at 532 nm with (a) NA= 0.80, (b) NA= 0.98, and (c) NA= 1.48 in immersion oil, respectively. (d) Diffraction-limited image (left) and super-oscillatory image with the application of metasurface filter (right). (e) Schematic illustration of the designed resolution-enhanced metalens described in Ref. [118]. (a) Reproduced with permission from Ref. [68]. (b) and (c) Reproduced with permission from Ref. [100]. (d) Reproduced with permission from Ref. [119]. (e) Reproduced with permission from Ref. [118]
Fig.7  (a) Schematic diagram of the working principle of the bifocal lens proposed in Ref. [120]. (b) Schematic diagram of the working principle of the designed bifocal metalens [92]. Bottom right: top view of the designed metalens consisting of nano-fins with same height but different cross sizes and orientations. (c) Schematic diagram of the multispectral chiral imaging metalens where the left-circularly polarized (LCP) light and right-circularly polarized (RCP) light from the same object are focused into two spots. Spiral arrows indicate helicity of the incident light. Blue and green nano-fins (top view) impart the phase profile required to focus RCP light and LCP light, respectively. The upper half of the image is formed by focusing the LCP light reflected from the beetle, whereas the lower half of the image is formed by focusing the RCP light reflected from the beetle. (d) Schematic diagram of the twofold polarization-selective metalens indicated in Ref. [121]. (e) Left: under the illumination of linearly polarized THz waves, two longitudinally distributed polarization-rotated focal points are demonstrated. Right: under the illumination of x-polarized THz waves, two transversely distributed focal points are demonstrated. (f) Measured point spread function of the achromatic varifocal metalens by rotating the polarization of linearly polarized input light of visible wavelengths. (a) Reproduced with permission from Ref. [120]. (b) Reproduced with permission from Ref. [92]. (c) Reproduced with permission from Ref. [122]. (d) Reproduced with permission from Ref. [121]. (e) Reproduced with permission from Ref. [123]. (f) Reproduced with permission from Ref. [124]
Fig.8  (a) Schematic diagram of the MEMS-assisted metasurface triplet operating as a compact focus tunable microscope. (b) Schematic diagram of the rotationally tunable multifocal Moiré metalens. (c) Schematic diagrams of the rotationally tunable metalens doublet showing negative focal length variation (left), no focus (middle), and positive focal length variation (right). (a) Reproduced with permission from Ref. [125]. (b) Reproduced with permission from Ref. [126]. (c) Reproduced with permission from Ref. [127]
Fig.9  (a) Left-hand side: schematic diagram of the principle of QPGM. Right-hand side: phase gradient image (PGI) formed by combining three DIC images (I1, I2, and I3). (b) LCP incident on the metasurface results in an output beam with Gaussian intensity distribution and a bright-field image. RCP incident on the same metasurface results in an output beam with donut-shaped intensity distribution and a spiral phase contrast image. (c) Microscopic spectral tomography images of frog egg cells with aplanatic metalens at different wavelengths. (d) Schematic diagram of the metalens-array-based quantum source. (a) Reproduced with permission from Ref. [129]. (b) Reproduced with permission from Ref. [130]. (c) Reproduced with permission from Ref. [131]. (d) Reproduced with permission from Ref. [132]
1 V G Veselago. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509–514
https://doi.org/10.1070/PU1968v010n04ABEH003699
2 J B Pendry, A J Holden, W J Stewart, I Youngs. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
https://doi.org/10.1103/PhysRevLett.76.4773 pmid: 10061377
3 J B Pendry, A J Holden, D J Robbins, W J Stewart. Low frequency plasmons in thin-wire structures. Journal of Physics Condensed Matter, 1998, 10(22): 4785–4809
https://doi.org/10.1088/0953-8984/10/22/007 pmid: 27665843
4 J B Pendry, A J Holden, D J Robbins, W J Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
https://doi.org/10.1109/22.798002
5 D R Smith, W J Padilla, D C Vier, S C Nemat-Nasser, S Schultz. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
https://doi.org/10.1103/PhysRevLett.84.4184 pmid: 10990641
6 R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
https://doi.org/10.1126/science.1058847 pmid: 11292865
7 A A Houck, J B Brock, I L Chuang. Experimental observations of a left-handed material that obeys Snell’s law. Physical Review Letters, 2003, 90(13): 137401
https://doi.org/10.1103/PhysRevLett.90.137401 pmid: 12689323
8 C G Parazzoli, R B Greegor, K Li, B E C Koltenbah, M Tanielian. Experimental verification and simulation of negative index of refraction using Snell’s law. Physical Review Letters, 2003, 90(10): 107401
https://doi.org/10.1103/PhysRevLett.90.107401 pmid: 12689029
9 J B Pendry. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
https://doi.org/10.1103/PhysRevLett.85.3966 pmid: 11041972
10 J B Pendry, S A Ramakrishna. Refining the perfect lens. Physica B, Condensed Matter, 2003, 338(1–4): 329–332
https://doi.org/10.1016/j.physb.2003.08.014
11 N Fang, H Lee, C Sun, X Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
https://doi.org/10.1126/science.1108759 pmid: 15845849
12 Z Liu, H Lee, Y Xiong, C Sun, X Zhang. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
https://doi.org/10.1126/science.1137368 pmid: 17379801
13 U Leonhardt. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
https://doi.org/10.1126/science.1126493 pmid: 16728596
14 J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
https://doi.org/10.1126/science.1125907 pmid: 16728597
15 D Schurig, J J Mock, B J Justice, S A Cummer, J B Pendry, A F Starr, D R Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
https://doi.org/10.1126/science.1133628 pmid: 17053110
16 N Engheta. Thin absorbing screens using metamaterial surfaces. In: Proceedings of IEEE Antennas and Propagation Society International Symposium. San Antonio: IEEE, 2002, 392–395
17 S A Tretyakov, S I Maslovski. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microwave and Optical Technology Letters, 2003, 38(3): 175–178
https://doi.org/10.1002/mop.11006
18 N I Landy, C M Bingham, T Tyler, N Jokerst, D R Smith, W J Padilla. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104
https://doi.org/10.1103/PhysRevB.79.125104
19 X Liu, T Starr, A F Starr, W J Padilla. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
https://doi.org/10.1103/PhysRevLett.104.207403 pmid: 20867064
20 J Hao, Y Yuan, L Ran, T Jiang, J A Kong, C T Chan, L Zhou. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908
https://doi.org/10.1103/PhysRevLett.99.063908 pmid: 17930829
21 S Zhang, Y S Park, J Li, X Lu, W Zhang, X Zhang. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901
https://doi.org/10.1103/PhysRevLett.102.023901 pmid: 19257274
22 H T Chen, W J Padilla, M J Cich, A K Azad, R D Averitt, A J Taylor. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
https://doi.org/10.1038/nphoton.2009.3
23 M Burresi, D Diessel, D van Oosten, S Linden, M Wegener, L Kuipers. Negative-index metamaterials: looking into the unit cell. Nano Letters, 2010, 10(7): 2480–2483
https://doi.org/10.1021/nl100943e pmid: 20518537
24 H H Hsiao, C H Chu, D P Tsai. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064
25 Q He, S Sun, S Xiao, L Zhou. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 2018, 6(19): 1800415
https://doi.org/10.1002/adom.201800415
26 S Chen, Z Li, Y Zhang, H Cheng, J Tian. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Advanced Optical Materials, 2018, 6(13): 1800104
https://doi.org/10.1002/adom.201800104
27 Y Hu, X Wang, X Luo, X Ou, L Li, Y Chen, Yang Ping, S Wang, H Duan. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 2020, 9(12): 3755–3780
https://doi.org/10.1515/nanoph-2020-0220
28 N Yu, P Genevet, M A Kats, F Aieta, J P Tetienne, F Capasso, Z Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
29 W T Chen, A Y Zhu, M Khorasaninejad, Z Shi, V Sanjeev, F Capasso. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Letters, 2017, 17(5): 3188–3194
https://doi.org/10.1021/acs.nanolett.7b00717 pmid: 28388086
30 M L Tseng, H H Hsiao, C H Chu, M K Chen, G Sun, A Q Liu, D P Tsai. Metalenses: advances and applications. Advanced Optical Materials, 2018, 6(18): 1800554
https://doi.org/10.1002/adom.201800554
31 H Liang, A Martins, B H V Borges, J Zhou, E R Martins, J Li, T F Krauss. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 2019, 6(12): 1461
https://doi.org/10.1364/OPTICA.6.001461
32 S W Moon, Y Kim, G Yoon, J Rho. Recent progress on ultrathin metalenses for flat optics. iScience, 2020, 23(12): 101877
33 X Zou, G Zheng, Q Yuan, W Zang, R Chen, T Li, L Li, S Wang, Z Wang, S Zhu. Imaging based on metalenses. PhotoniX, 2020, 1(1): 2
https://doi.org/10.1186/s43074-020-00007-9
34 L Huang, X Chen, H Mühlenbernd, G Li, B Bai, Q Tan, G Jin, T Zentgraf, S Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750–5755
https://doi.org/10.1021/nl303031j pmid: 23062196
35 Z Zhou, J Li, R Su, B Yao, H Fang, K Li, L Zhou, J Liu, D Stellinga, C P Reardon, T F Krauss, X Wang. Efficient silicon metasurfaces for visible light. ACS Photonics, 2017, 4(3): 544–551
https://doi.org/10.1021/acsphotonics.6b00740
36 E Arbabi, A Arbabi, S M Kamali, Y Horie, A Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 2017, 4(6): 625
https://doi.org/10.1364/OPTICA.4.000625
37 N Lawrence, J Trevino, L Dal Negro. Aperiodic arrays of active nanopillars for radiation engineering. Journal of Applied Physics, 2012, 111(11): 113101
https://doi.org/10.1063/1.4723564
38 X Li, S Xiao, B Cai, Q He, T J Cui, L Zhou. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 2012, 37(23): 4940–4942
https://doi.org/10.1364/OL.37.004940 pmid: 23202097
39 S Sun, Q He, S Xiao, Q Xu, X Li, L Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11(5): 426–431
https://doi.org/10.1038/nmat3292 pmid: 22466746
40 S Sun, K Y Yang, C M Wang, T K Juan, W T Chen, C Y Liao, Q He, S Xiao, W T Kung, G Y Guo, L Zhou, D P Tsai. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012, 12(12): 6223–6229
https://doi.org/10.1021/nl3032668 pmid: 23189928
41 B Walther, C Helgert, C Rockstuhl, F Setzpfandt, F Eilenberger, E B Kley, F Lederer, A Tünnermann, T Pertsch. Spatial and spectral light shaping with metamaterials. Advanced Materials, 2012, 24(47): 6300–6304
https://doi.org/10.1002/adma.201202540 pmid: 23065927
42 W T Chen, K Y Yang, C M Wang, Y W Huang, G Sun, I D Chiang, C Y Liao, W L Hsu, H T Lin, S Sun, L Zhou, A Q Liu, D P Tsai. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 2014, 14(1): 225–230
https://doi.org/10.1021/nl403811d pmid: 24329425
43 Z H Jiang, S Yun, L Lin, J A Bossard, D H Werner, T S Mayer. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions. Scientific Reports, 2013, 3(1): 1571
https://doi.org/10.1038/srep01571 pmid: 23535875
44 C Pfeiffer, A Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401
https://doi.org/10.1103/PhysRevLett.110.197401 pmid: 23705738
45 Y Yang, W Wang, P Moitra, I I Kravchenko, D P Briggs, J Valentine. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399
https://doi.org/10.1021/nl4044482 pmid: 24547692
46 Y Yao, R Shankar, M A Kats, Y Song, J Kong, M Loncar, F Capasso. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532
https://doi.org/10.1021/nl503104n pmid: 25310847
47 F Aieta, M A Kats, P Genevet, F Capasso. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345
https://doi.org/10.1126/science.aaa2494 pmid: 25700175
48 M Decker, I Staude, M Falkner, J Dominguez, D N Neshev, I Brener, T Pertsch, Y S Kivshar. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820
https://doi.org/10.1002/adom.201400584
49 W Zhu, Q Song, L Yan, W Zhang, P C Wu, L K Chin, H Cai, D P Tsai, Z X Shen, T W Deng, S K Ting, Y Gu, G Q Lo, D L Kwong, Z C Yang, R Huang, A Q Liu, N Zheludev. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Advanced Materials, 2015, 27(32): 4739–4743
https://doi.org/10.1002/adma.201501943 pmid: 26184076
50 E Almeida, O Bitton, Y Prior. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
https://doi.org/10.1038/ncomms12533 pmid: 27545581
51 E Almeida, G Shalem, Y Prior. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications, 2016, 7(1): 10367
https://doi.org/10.1038/ncomms10367 pmid: 26797164
52 J Hu, X Zhao, Y Lin, A Zhu, X Zhu, P Guo, B Cao, C Wang. All-dielectric metasurface circular dichroism waveplate. Scientific Reports, 2017, 7(1): 41893
https://doi.org/10.1038/srep41893 pmid: 28139753
53 N Shitrit, I Bretner, Y Gorodetski, V Kleiner, E Hasman. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042
https://doi.org/10.1021/nl2004835 pmid: 21513279
54 X Chen, L Huang, H Mühlenbernd, G Li, B Bai, Q Tan, G Jin, C W Qiu, S Zhang, T Zentgraf. Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012, 3(1): 1198
https://doi.org/10.1038/ncomms2207 pmid: 23149743
55 M Kang, J Chen, X L Wang, H T Wang. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B, Optical Physics, 2012, 29(4): 572–576
https://doi.org/10.1364/JOSAB.29.000572
56 M Kang, T Feng, H T Wang, J Li. Wave front engineering from an array of thin aperture antennas. Optics Express, 2012, 20(14): 15882–15890
https://doi.org/10.1364/OE.20.015882 pmid: 22772278
57 G Li, M Kang, S Chen, S Zhang, E Y Pun, K W Cheah, J Li. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151
https://doi.org/10.1021/nl401734r pmid: 23965168
58 D Lin, P Fan, E Hasman, M L Brongersma. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
https://doi.org/10.1126/science.1253213 pmid: 25035488
59 A Shaltout, J Liu, V M Shalaev, A V Kildishev. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Letters, 2014, 14(8): 4426–4431
https://doi.org/10.1021/nl501396d pmid: 25051158
60 X Ding, F Monticone, K Zhang, L Zhang, D Gao, S N Burokur, A de Lustrac, Q Wu, C W Qiu, A Alù. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27(7): 1195–1200
https://doi.org/10.1002/adma.201405047 pmid: 25545285
61 J Kim, Y Li, M N Miskiewicz, C Oh, M W Kudenov, M J Escuti. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica, 2015, 2(11): 958
https://doi.org/10.1364/OPTICA.2.000958
62 G Li, S Chen, N Pholchai, B Reineke, P W Wong, E Y Pun, K W Cheah, T Zentgraf, S Zhang. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials, 2015, 14(6): 607–612
https://doi.org/10.1038/nmat4267 pmid: 25849530
63 W Luo, S Xiao, Q He, S Sun, L Zhou. Photonic spin hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3(8): 1102–1108
https://doi.org/10.1002/adom.201500068
64 D Wen, F Yue, G Li, G Zheng, K Chan, S Chen, M Chen, K F Li, P W Wong, K W Cheah, E Y Pun, S Zhang, X Chen. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241
https://doi.org/10.1038/ncomms9241 pmid: 26354497
65 G Zheng, H Mühlenbernd, M Kenney, G Li, T Zentgraf, S Zhang. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
https://doi.org/10.1038/nnano.2015.2 pmid: 25705870
66 H S Ee, R Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823
https://doi.org/10.1021/acs.nanolett.6b00618 pmid: 26986191
67 M Khorasaninejad, A Ambrosio, P Kanhaiya, F Capasso. Broadband and chiral binary dielectric meta-holograms. Science Advances, 2016, 2(5): e1501258
https://doi.org/10.1126/sciadv.1501258 pmid: 27386518
68 M Khorasaninejad, W T Chen, R C Devlin, J Oh, A Y Zhu, F Capasso. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
https://doi.org/10.1126/science.aaf6644 pmid: 27257251
69 W T Chen, M Khorasaninejad, A Y Zhu, J Oh, R C Devlin, A Zaidi, F Capasso. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
https://doi.org/10.1038/lsa.2016.259 pmid: 30167252
70 W Luo, S Sun, H X Xu, Q He, L Zhou. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033
https://doi.org/10.1103/PhysRevApplied.7.044033
71 Z Ma, Y Li, Y Li, Y Gong, S A Maier, M Hong. All-dielectric planar chiral metasurface with gradient geometric phase. Optics Express, 2018, 26(5): 6067–6078
https://doi.org/10.1364/OE.26.006067 pmid: 29529802
72 R Xu, P Chen, J Tang, W Duan, S J Ge, L L Ma, R X Wu, W Hu, Y Q Lu. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Physical Review Applied, 2018, 10(3): 034061
https://doi.org/10.1103/PhysRevApplied.10.034061
73 G Yoon, D Lee, K T Nam, J Rho. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428
https://doi.org/10.1021/acsnano.8b01344 pmid: 29924588
74 M A Ansari, I Kim, D Lee, M H Waseem, M Zubair, N Mahmood, T Badloe, S Yerci, T Tauqeer, M Q Mehmood, J Rho. A spin-encoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065
https://doi.org/10.1002/lpor.201900065
75 T Xu, C Du, C Wang, X Luo. Subwavelength imaging by metallic slab lens with nanoslits. Applied Physics Letters, 2007, 91(20): 201501
https://doi.org/10.1063/1.2811711
76 A Arbabi, Y Horie, A J Ball, M Bagheri, A Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 2015, 6(1): 7069
https://doi.org/10.1038/ncomms8069 pmid: 25947118
77 M Khorasaninejad, A Y Zhu, C Roques-Carmes, W T Chen, J Oh, I Mishra, R C Devlin, F Capasso. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 2016, 16(11): 7229–7234
https://doi.org/10.1021/acs.nanolett.6b03626 pmid: 27791380
78 W Sun, Q He, S Sun, L Zhou. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light, Science & Applications, 2016, 5(1): e16003
https://doi.org/10.1038/lsa.2016.3 pmid: 30167110
79 P Lalanne, S Astilean, P Chavel, E Cambril, H Launois. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Optics Letters, 1998, 23(14): 1081–1083
https://doi.org/10.1364/OL.23.001081 pmid: 18087434
80 E Schonbrun, K Seo, K B Crozier. Reconfigurable imaging systems using elliptical nanowires. Nano Letters, 2011, 11(10): 4299–4303
https://doi.org/10.1021/nl202324s pmid: 21923112
81 P R West, J L Stewart, A V Kildishev, V M Shalaev, V V Shkunov, F Strohkendl, Y A Zakharenkov, R K Dodds, R Byren. All-dielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22(21): 26212–26221
https://doi.org/10.1364/OE.22.026212 pmid: 25401653
82 Q Zhang, M Li, T Liao, X Cui. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Optics Communications, 2018, 411: 93–100
https://doi.org/10.1016/j.optcom.2017.11.011
83 N Yu, F Aieta, P Genevet, M A Kats, Z Gaburro, F Capasso. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 2012, 12(12): 6328–6333
https://doi.org/10.1021/nl303445u pmid: 23130979
84 N Yu, P Genevet, F Aieta, M A Kats, R Blanchard, G Aoust, J P Tetienne, Z Gaburro, F Capasso. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423
https://doi.org/10.1109/JSTQE.2013.2241399
85 F Aieta, P Genevet, M A Kats, N Yu, R Blanchard, Z Gaburro, F Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 2012, 12(9): 4932–4936
https://doi.org/10.1021/nl302516v pmid: 22894542
86 X Ni, S Ishii, A V Kildishev, V M Shalaev. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light, Science & Applications, 2013, 2(4): e72
https://doi.org/10.1038/lsa.2013.28
87 J P Balthasar Mueller, N A Rubin, R C Devlin, B Groever, F Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
https://doi.org/10.1103/PhysRevLett.118.113901 pmid: 28368630
88 S Wang, P C Wu, V C Su, Y C Lai, C Hung Chu, J W Chen, S H Lu, J Chen, B Xu, C H Kuan, T Li, S Zhu, D P Tsai. Broadband achromatic optical metasurface devices. Nature Communications, 2017, 8(1): 187
https://doi.org/10.1038/s41467-017-00166-7 pmid: 28775300
89 W T Chen, A Y Zhu, V Sanjeev, M Khorasaninejad, Z Shi, E Lee, F Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220–226
https://doi.org/10.1038/s41565-017-0034-6 pmid: 29292382
90 W T Chen, A Y Zhu, J Sisler, Y W Huang, K M A Yousef, E Lee, C W Qiu, F Capasso. Broadband achromatic metasurface-refractive optics. Nano Letters, 2018, 18(12): 7801–7808
https://doi.org/10.1021/acs.nanolett.8b03567 pmid: 30423252
91 S Li, X Li, G Wang, S Liu, L Zhang, C Zeng, L Wang, Q Sun, W Zhao, W Zhang. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface. Advanced Optical Materials, 2019, 7(5): 1801365
92 S Tian, H Guo, J Hu, S Zhuang. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688
https://doi.org/10.1364/OE.27.000680 pmid: 30696150
93 W T Chen, P Török, M R Foreman, C Y Liao, W Y Tsai, P R Wu, D P Tsai. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 2016, 27(22): 224002
https://doi.org/10.1088/0957-4484/27/22/224002 pmid: 27114455
94 Y Yuan, S Sun, Y Chen, K Zhang, X Ding, B Ratni, Q Wu, S N Burokur, C W Qiu. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Advanced Science, 2020, 7(18): 2001437
https://doi.org/10.1002/advs.202001437 pmid: 32999848
95 J Zhang, Y Liang, S Wu, W Xu, S Zheng, L Zhang. Single-layer dielectric metasurface with giant chiroptical effects combining geometric and propagation phase. Optics Communications, 2021, 478: 126405
https://doi.org/10.1016/j.optcom.2020.126405
96 A Arbabi, Y Horie, M Bagheri, A Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
https://doi.org/10.1038/nnano.2015.186 pmid: 26322944
97 E Arbabi, A Arbabi, S M Kamali, Y Horie, A Faraon. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Optics Express, 2016, 24(16): 18468–18477
https://doi.org/10.1364/OE.24.018468 pmid: 27505810
98 Z Liu, Z Li, Z Liu, J Li, H Cheng, P Yu, W Liu, C Tang, C Gu, J Li, S Chen, J Tian. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces. Advanced Functional Materials, 2015, 25(34): 5428–5434
https://doi.org/10.1002/adfm.201502046
99 Y Nagasaki, M Suzuki, J Takahara. All-dielectric dual-color pixel with subwavelength resolution. Nano Letters, 2017, 17(12): 7500–7506
https://doi.org/10.1021/acs.nanolett.7b03421 pmid: 29141150
100 H Liang, Q Lin, X Xie, Q Sun, Y Wang, L Zhou, L Liu, X Yu, J Zhou, T F Krauss, J Li. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Letters, 2018, 18(7): 4460–4466
https://doi.org/10.1021/acs.nanolett.8b01570 pmid: 29940122
101 C H Liu, J Zheng, S Colburn, T K Fryett, Y Chen, X Xu, A Majumdar. Ultrathin van der Waals metalenses. Nano Letters, 2018, 18(11): 6961–6966
https://doi.org/10.1021/acs.nanolett.8b02875 pmid: 30296107
102 M Khorasaninejad, F Aieta, P Kanhaiya, M A Kats, P Genevet, D Rousso, F Capasso. Achromatic metasurface lens at telecommunication wavelengths. Nano Letters, 2015, 15(8): 5358–5362
https://doi.org/10.1021/acs.nanolett.5b01727 pmid: 26168329
103 Z Shi, M Khorasaninejad, Y W Huang, C Roques-Carmes, A Y Zhu, W T Chen, V Sanjeev, Z W Ding, M Tamagnone, K Chaudhary, R C Devlin, C W Qiu, F Capasso. Single-layer metasurface with controllable multiwavelength functions. Nano Letters, 2018, 18(4): 2420–2427
https://doi.org/10.1021/acs.nanolett.7b05458 pmid: 29461838
104 S Shrestha, A C Overvig, M Lu, A Stein, N Yu. Broadband achromatic dielectric metalenses. Light, Science & Applications, 2018, 7(1): 85
https://doi.org/10.1038/s41377-018-0078-x pmid: 30416721
105 Z B Fan, H Y Qiu, H L Zhang, X N Pang, L D Zhou, L Liu, H Ren, Q H Wang, J W Dong. A broadband achromatic metalens array for integral imaging in the visible. Light, Science & Applications, 2019, 8(1): 67
https://doi.org/10.1038/s41377-019-0178-2 pmid: 31666943
106 S Wang, P C Wu, V C Su, Y C Lai, M K Chen, H Y Kuo, B H Chen, Y H Chen, T T Huang, J H Wang, R M Lin, C H Kuan, T Li, Z Wang, S Zhu, D P Tsai. A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018, 13(3): 227–232
https://doi.org/10.1038/s41565-017-0052-4 pmid: 29379204
107 R J Lin, V C Su, S Wang, M K Chen, T L Chung, Y H Chen, H Y Kuo, J W Chen, J Chen, Y T Huang, J H Wang, C H Chu, P C Wu, T Li, Z Wang, S Zhu, D P Tsai. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 2019, 14(3): 227–231
https://doi.org/10.1038/s41565-018-0347-0 pmid: 30664753
108 M Ye, V Ray, Y S Yi. Achromatic flat subwavelength grating lens over whole visible bandwidths. IEEE Photonics Technology Letters, 2018, 30(10): 955–958
https://doi.org/10.1109/LPT.2018.2825198
109 Z Zhang, Z Cui, Y Liu, S Wang, I Staude, Z Yang, M Zhao. Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared spectrum. OSA Continuum, 2018, 1(3): 882–890
https://doi.org/10.1364/OSAC.1.000882
110 W T Chen, A Y Zhu, J Sisler, Z Bharwani, F Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 2019, 10(1): 355
https://doi.org/10.1038/s41467-019-08305-y pmid: 30664662
111 Q Cheng, M Ma, D Yu, Z Shen, J Xie, J Wang, N Xu, H Guo, W Hu, S Wang, T Li, S Zhuang. Broadband achromatic metalens in terahertz regime. Science Bulletin, 2019, 64(20): 1525–1531
https://doi.org/10.1016/j.scib.2019.08.004
112 F Zhao, X Jiang, S Li, H Chen, G Liang, Z Wen, Z Zhang, G Chen. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. Journal of Physics D, Applied Physics, 2019, 52(50): 505110
https://doi.org/10.1088/1361-6463/ab46c4
113 H Chung, O D Miller. High-NA achromatic metalenses by inverse design. Optics Express, 2020, 28(5): 6945–6965
https://doi.org/10.1364/OE.385440 pmid: 32225932
114 K Ou, F Yu, G Li, W Wang, A E Miroshnichenko, L Huang, P Wang, T Li, Z Li, X Chen, W Lu. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6(37): eabc0711
https://doi.org/10.1126/sciadv.abc0711 pmid: 32917714
115 J Sisler, WT Chen, AY Zhu, F Capasso. Controlling dispersion in multifunctional metasurfaces. APL Photonics, 2020, 5(5): 056107
116 F Zhao, Z Li, X Dai, X Liao, S Li, J Cao, Z Shang, Z Zhang, G Liang, G Chen, H Li, Z Wen. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens. Advanced Optical Materials, 2020, 8(21): 2000842
https://doi.org/10.1002/adom.202000842
117 G Yoon, I Kim, J Rho. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163: 7–20
https://doi.org/10.1016/j.mee.2016.05.005
118 R Zuo, W Liu, H Cheng, S Chen, J Tian. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Advanced Optical Materials, 2018, 6(21): 1800795
https://doi.org/10.1002/adom.201800795
119 Z Li, T Zhang, Y Wang, W Kong, J Zhang, Y Huang, C Wang, X Li, M Pu, X Luo. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser & Photonics Reviews, 2018, 12(10): 1800064
https://doi.org/10.1002/lpor.201800064
120 R Lin, X Li. Multifocal metalens based on multilayer Pancharatnam–Berry phase elements architecture. Optics Letters, 2019, 44(11): 2819
https://doi.org/10.1364/OL.44.002819
121 S Gao, C S Park, C Zhou, S S Lee, D Y Choi. Twofold polarization-selective all-dielectric Trifoci metalens for linearly polarized visible light. Advanced Optical Materials, 2019, 7(21): 1900883
https://doi.org/10.1002/adom.201900883
122 M Khorasaninejad, W T Chen, A Y Zhu, J Oh, R C Devlin, D Rousso, F Capasso. Multispectral chiral imaging with a metalens. Nano Letters, 2016, 16(7): 4595–4600
https://doi.org/10.1021/acs.nanolett.6b01897 pmid: 27267137
123 X Zang, H Ding, Y Intaravanne, L Chen, Y Peng, J Xie, Q Ke, A V Balakin, A P Shkurinov, X Chen, Y Zhu, S Zhuang. A multi-foci metalens with polarization-rotated focal points. Laser & Photonics Reviews, 2019, 13(12): 1900182
https://doi.org/10.1002/lpor.201900182
124 M D Aiello, A S Backer, A J Sapon, J Smits, J D Perreault, P Llull, V M Acosta. Achromatic varifocal metalens for the visible spectrum. ACS Photonics, 2019, 6(10): 2432–2440
https://doi.org/10.1021/acsphotonics.9b00523
125 E Arbabi, A Arbabi, S M Kamali, Y Horie, M Faraji-Dana, A Faraon. MEMS-tunable dielectric metasurface lens. Nature Communications, 2018, 9(1): 812
https://doi.org/10.1038/s41467-018-03155-6 pmid: 29476147
126 N Yilmaz, A Ozdemir, A Ozer, H Kurt. Rotationally tunable polarization-insensitive single and multifocal metasurface. Journal of Optics, 2019, 21(4): 045105
https://doi.org/10.1088/2040-8986/ab0d5f
127 Y Wei, Y Wang, X Feng, S Xiao, Z Wang, T Hu, M Hu, J Song, M Wegener, M Zhao, J Xia, Z Yang. Compact optical polarization-insensitive zoom metalens doublet. Advanced Optical Materials, 2020, 8(13): 2000142
https://doi.org/10.1002/adom.202000142
128 E Arbabi, A Arbabi, S M Kamali, Y Horie, A Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628
https://doi.org/10.1364/OPTICA.3.000628
129 H Kwon, E Arbabi, S M Kamali, M Faraji-Dana, A Faraon. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics, 2020, 14(2): 109–114
https://doi.org/10.1038/s41566-019-0536-x
130 P Huo, C Zhang, W Zhu, M Liu, S Zhang, S Zhang, L Chen, H J Lezec, A Agrawal, Y Lu, T Xu. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
https://doi.org/10.1021/acs.nanolett.0c00471 pmid: 32155076
131 C Chen, W Song, J W Chen, J H Wang, Y H Chen, B Xu, M K Chen, H Li, B Fang, J Chen, H Y Kuo, S Wang, D P Tsai, S Zhu, T Li. Spectral tomographic imaging with aplanatic metalens. Light, Science & Applications, 2019, 8(1): 99
https://doi.org/10.1038/s41377-019-0208-0 pmid: 31728191
132 L Li, Z Liu, X Ren, S Wang, V C Su, M K Chen, C H Chu, H Y Kuo, B Liu, W Zang, G Guo, L Zhang, Z Wang, S Zhu, D P Tsai. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368(6498): 1487–1490
https://doi.org/10.1126/science.aba9779 pmid: 32587020
[1] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[2] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[3] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed