Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 148-153    https://doi.org/10.1007/s12200-021-1213-5
RESEARCH ARTICLE
Finite element modeling of electromagnetic properties in photonic bianisotropic structures
Zhongfei XIONG1, Weijin CHEN1,2, Zhuoran WANG1, Jing XU1,3, Yuntian CHEN1,3()
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Department of Electrical and Computer Engineering (ECE), National University of Singapore, Singapore 117583, Singapore
3. Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(730 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Given a constitutive relation of the bianisotropic medium, it is not trivial to study how light interacts with the photonic bianisotropic structure due to the limited available means of studying electromagnetic properties in bianisotropic media. In this paper, we study the electromagnetic properties of photonic bianisotropic structures using the finite element method. We prove that the vector wave equation with the presence of bianisotropic is self-adjoint under scalar inner product. we propose a balanced formulation of weak form in the practical implementation, which outperforms the standard formulation in finite element modeling. Furthermore, we benchmark our numerical results obtained from finite element simulation in three different scenarios. These are bianisotropy-dependent reflection and transmission of plane waves incident onto a bianisotropic slab, band structure of bianisotropic photonic crystals with valley-dependent phenomena, and the modal properties of bianisotropic ring resonators. The first two simulated results obtained from our modified weak form yield excellent agreements either with theoretical predictions or available data from the literature, and the modal properties in the last example, i.e., bianisotropic ring resonators as a polarization-dependent optical insulator, are also consistent with the theoretical analyses.

Keywords bianisotropic      finite element method      adjoint     
Corresponding Author(s): Yuntian CHEN   
Just Accepted Date: 13 May 2021   Online First Date: 13 July 2021    Issue Date: 14 July 2021
 Cite this article:   
Zhongfei XIONG,Weijin CHEN,Zhuoran WANG, et al. Finite element modeling of electromagnetic properties in photonic bianisotropic structures[J]. Front. Optoelectron., 2021, 14(2): 148-153.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1213-5
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/148
Fig.1  (a) Schematic diagram of simulating reflection and transmission spectrums of bianisotropic slab with normal incident light. A bianisotropic slab (dark gray) is surrounded by air (light gray), the boundaries are vertical with y-axis and light propagates along y direction. Horizontal (p) and vertical ( s) polarized light are excited (received) at port 1 (2) and 3 (4) respectively. (b)−(e) Reflection ( r) and transmission ( t) spectrum of horizontal ( p) and vertical ( s) polarized light. The results from FEM and semi-analysis method are represented by blue circles and red lines respectively
Fig.2  (a) Bianisotropic honeycomb photonic crystal. The blue and purple circles represent two kinds of rods, and a unit cell is extracted as the green hexagon with r= 0.25a. ε//=8, εprep=1, κ=0.5 in rod 1 but κ=0.5 in rod 2. (b) Band structure on the high symmetry line. Red and blue points represent spin-down and spin-up sampled form literature, and blue circles is the result from COMSOL with modified weak form. The inset shows the Brillouin zone where G1 and G2 are reciprocal lattice vectors. K and K' are two kinds of vertex
Fig.3  Bianisotropic ring resonator behaves as polarization depended insulator. Bianisotropic slab waveguide (a) and bianisotropic ring resonator formed by rolling slab waveguide (b). Optical beam with polarization Ez +1.72iEy propagates in the slab couples with ring from the left to the right (c) but propagates without coupling from the right to the left (d). Beam with polarization Ez1.72 iEy goes through the slab in positive direction (e) but is insulated in reversal direction (f). The width of slab and ring is 0.15?μm, the radius of ring is 2.3272?μm. ε r=μr=1 and χ 11=2.7442 in bianisotropic ring, ε r=μr=2.366 in slab. Vacuum wavelength is 1.0615?μm and background medium is air
1 J K Gansel, M Thiel, M S Rill, M Decker, K Bade, V Saile, G von Freymann, S Linden, M Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515
https://doi.org/10.1126/science.1177031 pmid: 19696310
2 C E Kriegler, M S Rill, S Linden, M M Wegener. Bianisotropic photonic metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(2): 367–375
https://doi.org/10.1109/JSTQE.2009.2020809
3 C M Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
https://doi.org/10.1038/nphoton.2011.154
4 Q Guo, W Gao, J Chen, Y Liu, S Zhang. Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials. Physical Review Letters, 2015, 115(6): 067402
https://doi.org/10.1103/PhysRevLett.115.067402 pmid: 26296131
5 A P Slobozhanyuk, A B Khanikaev, D S Filonov, D A Smirnova, A E Miroshnichenko, Y S Kivshar. Experimental demonstration of topological effects in bianisotropic metamaterials. Scientific Reports, 2016, 6(1): 22270
https://doi.org/10.1038/srep22270 pmid: 26936219
6 Y Moritake, T Tanaka. Bi-anisotropic Fano resonance in three-dimensional metamaterials. Scientific Reports, 2018, 8(1): 9012
https://doi.org/10.1038/s41598-018-27404-2 pmid: 29899415
7 Y Z Yu, C Y Kuo, R L Chern, C T Chan. Photonic topological semimetals in bianisotropic metamaterials. Scientific Reports, 2019, 9(1): 18312
https://doi.org/10.1038/s41598-019-54523-1 pmid: 31797947
8 C Pfeiffer, A Grbic. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Physical Review Applied, 2014, 2(4): 044011
https://doi.org/10.1103/PhysRevApplied.2.044011
9 C Pfeiffer, C Zhang, V Ray, L J Guo, A Grbic. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica, 2016, 3(4): 427–432
https://doi.org/10.1364/OPTICA.3.000427
10 C Pfeiffer, C Zhang, V Ray, L J Guo, A Grbic. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902
https://doi.org/10.1103/PhysRevLett.113.023902 pmid: 25062183
11 M Odit, P Kapitanova, P Belov, R Alaee, C Rockstuhl, Y S Kivshar. Experimental realisation of all-dielectric bianisotropic metasurfaces. Applied Physics Letters, 2016, 108(22): 221903
https://doi.org/10.1063/1.4953023
12 A Epstein, G V Eleftheriades. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3880–3895
https://doi.org/10.1109/TAP.2016.2588495
13 V S Asadchy, A Díaz-Rubio, S A Tretyakov. Bianisotropic metasurfaces: physics and applications. Nanophotonics, 2018, 7(6): 1069–1094
https://doi.org/10.1515/nanoph-2017-0132
14 J Li, C Shen, A Díaz-Rubio, S A Tretyakov, S A Cummer. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nature Communications, 2018, 9(1): 1342
https://doi.org/10.1038/s41467-018-03778-9 pmid: 29632385
15 J Li, A Díaz-Rubio, C Shen, Z Jia, S A Tretyakov, S Cummer. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Physical Review Applied, 2019, 11(2): 024016
https://doi.org/10.1103/PhysRevApplied.11.024016
16 X Chen, B I Wu, J A Kong, T M Grzegorczyk. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Physical Review E, 2005, 71(4): 046610
https://doi.org/10.1103/PhysRevE.71.046610 pmid: 15903809
17 Z Li, K Aydin, E Ozbay. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Physical Review E, 2009, 79(2): 026610
https://doi.org/10.1103/PhysRevE.79.026610 pmid: 19391866
18 O Ouchetto, C W Qiu, S Zouhdi, L W Li, A Razek. Homogenization of 3-D periodic bianisotropic metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(11): 3893–3898
https://doi.org/10.1109/TMTT.2006.885082
19 U C Hasar, A Muratoglu, M Bute, J J Barroso, M Ertugrul. Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1488–1497
https://doi.org/10.1109/TMTT.2016.2644639
20 J Zhao, X Jing, W Wang, Y Tian, D Zhu, G Shi. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Optics & Laser Technology, 2017, 95: 56–62
https://doi.org/10.1016/j.optlastec.2017.04.001
21 A Shaltout, V Shalaev, A Kildishev. Homogenization of bi-anisotropic metasurfaces. Optics Express, 2013, 21(19): 21941–21950
https://doi.org/10.1364/OE.21.021941 pmid: 24104087
22 M Albooyeh, S Tretyakov, C Simovski. Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework. Annalen der Physik, 2016, 528(9-10): 721–737
https://doi.org/10.1002/andp.201600015
23 I V Lindell, A H Sihvola, A J Viitanen, S A Tretyakov. Electromagnetic Waves in Chiral and Bi-Isotropic Media. Boston: Artech House on Demand, 1994
24 A Serdiukov, I Semchenk, S Tertyakov, A Sihvola. Electromagnetics of Bi-Anisotropic Materials-Theory and Application. Singapore: Gordon and Breach, 2001
25 I Sersic, C Tuambilangana, T Kampfrath, A F Koenderink. Magnetoelectric point scattering theory for metamaterial scatterers. Physical Review B, 2011, 83(24): 245102
https://doi.org/10.1103/PhysRevB.83.245102
26 L Peng, X Zheng, K Wang, S Sang, Y Chen, Y G Wang. Layer-by-layer design of bianisotropic metamaterial and its homogenization. Progress In Electromagnetics Research., 2017, 159: 39–47
https://doi.org/10.2528/PIER17041502
27 J Xu, B Wu, Y Chen. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case. Optics Express, 2015, 23(9): 11566–11575
https://doi.org/10.1364/OE.23.011566 pmid: 25969250
28 COMSOL Multiphysics. 5.2: a finite element analysis, solver and simulation software.
29 J W Dong, X D Chen, H Zhu, Y Wang, X Zhang. Valley photonic crystals for control of spin and topology. Nature Materials, 2017, 16(3): 298–302
https://doi.org/10.1038/nmat4807 pmid: 27893722
[1] Chenyang WANG, Hongyu ZHANG, Hongyi YUAN, Jinrui ZHONG, Cuicui LU. Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 73-88.
[2] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[3] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed