|
|
Finite element modeling of electromagnetic properties in photonic bianisotropic structures |
Zhongfei XIONG1, Weijin CHEN1,2, Zhuoran WANG1, Jing XU1,3, Yuntian CHEN1,3( ) |
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China 2. Department of Electrical and Computer Engineering (ECE), National University of Singapore, Singapore 117583, Singapore 3. Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Given a constitutive relation of the bianisotropic medium, it is not trivial to study how light interacts with the photonic bianisotropic structure due to the limited available means of studying electromagnetic properties in bianisotropic media. In this paper, we study the electromagnetic properties of photonic bianisotropic structures using the finite element method. We prove that the vector wave equation with the presence of bianisotropic is self-adjoint under scalar inner product. we propose a balanced formulation of weak form in the practical implementation, which outperforms the standard formulation in finite element modeling. Furthermore, we benchmark our numerical results obtained from finite element simulation in three different scenarios. These are bianisotropy-dependent reflection and transmission of plane waves incident onto a bianisotropic slab, band structure of bianisotropic photonic crystals with valley-dependent phenomena, and the modal properties of bianisotropic ring resonators. The first two simulated results obtained from our modified weak form yield excellent agreements either with theoretical predictions or available data from the literature, and the modal properties in the last example, i.e., bianisotropic ring resonators as a polarization-dependent optical insulator, are also consistent with the theoretical analyses.
|
Keywords
bianisotropic
finite element method
adjoint
|
Corresponding Author(s):
Yuntian CHEN
|
Just Accepted Date: 13 May 2021
Online First Date: 13 July 2021
Issue Date: 14 July 2021
|
|
1 |
J K Gansel, M Thiel, M S Rill, M Decker, K Bade, V Saile, G von Freymann, S Linden, M Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515
https://doi.org/10.1126/science.1177031
pmid: 19696310
|
2 |
C E Kriegler, M S Rill, S Linden, M M Wegener. Bianisotropic photonic metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(2): 367–375
https://doi.org/10.1109/JSTQE.2009.2020809
|
3 |
C M Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
https://doi.org/10.1038/nphoton.2011.154
|
4 |
Q Guo, W Gao, J Chen, Y Liu, S Zhang. Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials. Physical Review Letters, 2015, 115(6): 067402
https://doi.org/10.1103/PhysRevLett.115.067402
pmid: 26296131
|
5 |
A P Slobozhanyuk, A B Khanikaev, D S Filonov, D A Smirnova, A E Miroshnichenko, Y S Kivshar. Experimental demonstration of topological effects in bianisotropic metamaterials. Scientific Reports, 2016, 6(1): 22270
https://doi.org/10.1038/srep22270
pmid: 26936219
|
6 |
Y Moritake, T Tanaka. Bi-anisotropic Fano resonance in three-dimensional metamaterials. Scientific Reports, 2018, 8(1): 9012
https://doi.org/10.1038/s41598-018-27404-2
pmid: 29899415
|
7 |
Y Z Yu, C Y Kuo, R L Chern, C T Chan. Photonic topological semimetals in bianisotropic metamaterials. Scientific Reports, 2019, 9(1): 18312
https://doi.org/10.1038/s41598-019-54523-1
pmid: 31797947
|
8 |
C Pfeiffer, A Grbic. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Physical Review Applied, 2014, 2(4): 044011
https://doi.org/10.1103/PhysRevApplied.2.044011
|
9 |
C Pfeiffer, C Zhang, V Ray, L J Guo, A Grbic. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica, 2016, 3(4): 427–432
https://doi.org/10.1364/OPTICA.3.000427
|
10 |
C Pfeiffer, C Zhang, V Ray, L J Guo, A Grbic. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902
https://doi.org/10.1103/PhysRevLett.113.023902
pmid: 25062183
|
11 |
M Odit, P Kapitanova, P Belov, R Alaee, C Rockstuhl, Y S Kivshar. Experimental realisation of all-dielectric bianisotropic metasurfaces. Applied Physics Letters, 2016, 108(22): 221903
https://doi.org/10.1063/1.4953023
|
12 |
A Epstein, G V Eleftheriades. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3880–3895
https://doi.org/10.1109/TAP.2016.2588495
|
13 |
V S Asadchy, A Díaz-Rubio, S A Tretyakov. Bianisotropic metasurfaces: physics and applications. Nanophotonics, 2018, 7(6): 1069–1094
https://doi.org/10.1515/nanoph-2017-0132
|
14 |
J Li, C Shen, A Díaz-Rubio, S A Tretyakov, S A Cummer. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nature Communications, 2018, 9(1): 1342
https://doi.org/10.1038/s41467-018-03778-9
pmid: 29632385
|
15 |
J Li, A Díaz-Rubio, C Shen, Z Jia, S A Tretyakov, S Cummer. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Physical Review Applied, 2019, 11(2): 024016
https://doi.org/10.1103/PhysRevApplied.11.024016
|
16 |
X Chen, B I Wu, J A Kong, T M Grzegorczyk. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Physical Review E, 2005, 71(4): 046610
https://doi.org/10.1103/PhysRevE.71.046610
pmid: 15903809
|
17 |
Z Li, K Aydin, E Ozbay. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Physical Review E, 2009, 79(2): 026610
https://doi.org/10.1103/PhysRevE.79.026610
pmid: 19391866
|
18 |
O Ouchetto, C W Qiu, S Zouhdi, L W Li, A Razek. Homogenization of 3-D periodic bianisotropic metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(11): 3893–3898
https://doi.org/10.1109/TMTT.2006.885082
|
19 |
U C Hasar, A Muratoglu, M Bute, J J Barroso, M Ertugrul. Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1488–1497
https://doi.org/10.1109/TMTT.2016.2644639
|
20 |
J Zhao, X Jing, W Wang, Y Tian, D Zhu, G Shi. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Optics & Laser Technology, 2017, 95: 56–62
https://doi.org/10.1016/j.optlastec.2017.04.001
|
21 |
A Shaltout, V Shalaev, A Kildishev. Homogenization of bi-anisotropic metasurfaces. Optics Express, 2013, 21(19): 21941–21950
https://doi.org/10.1364/OE.21.021941
pmid: 24104087
|
22 |
M Albooyeh, S Tretyakov, C Simovski. Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework. Annalen der Physik, 2016, 528(9-10): 721–737
https://doi.org/10.1002/andp.201600015
|
23 |
I V Lindell, A H Sihvola, A J Viitanen, S A Tretyakov. Electromagnetic Waves in Chiral and Bi-Isotropic Media. Boston: Artech House on Demand, 1994
|
24 |
A Serdiukov, I Semchenk, S Tertyakov, A Sihvola. Electromagnetics of Bi-Anisotropic Materials-Theory and Application. Singapore: Gordon and Breach, 2001
|
25 |
I Sersic, C Tuambilangana, T Kampfrath, A F Koenderink. Magnetoelectric point scattering theory for metamaterial scatterers. Physical Review B, 2011, 83(24): 245102
https://doi.org/10.1103/PhysRevB.83.245102
|
26 |
L Peng, X Zheng, K Wang, S Sang, Y Chen, Y G Wang. Layer-by-layer design of bianisotropic metamaterial and its homogenization. Progress In Electromagnetics Research., 2017, 159: 39–47
https://doi.org/10.2528/PIER17041502
|
27 |
J Xu, B Wu, Y Chen. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case. Optics Express, 2015, 23(9): 11566–11575
https://doi.org/10.1364/OE.23.011566
pmid: 25969250
|
28 |
COMSOL Multiphysics. 5.2: a finite element analysis, solver and simulation software.
|
29 |
J W Dong, X D Chen, H Zhu, Y Wang, X Zhang. Valley photonic crystals for control of spin and topology. Nature Materials, 2017, 16(3): 298–302
https://doi.org/10.1038/nmat4807
pmid: 27893722
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|