Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (2) : 21    https://doi.org/10.1007/s12200-022-00022-7
RESEARCH ARTICLE
TCNQ-based organic cocrystal integrated red emission and n-type charge transport
Mengjia Jiang1, Shuyu Li2, Chun Zhen1, Lingsong Wang1, Fei Li1, Yihan Zhang1, Weibing Dong3, Xiaotao Zhang2,3(), Wenping Hu1,4()
1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
2. Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
3. Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Qinghai-Tibet Plateau, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
4. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
 Download: PDF(1782 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Simultaneously realizing the optical and electrical properties of organic materials is always challenging. Herein, a convenient and promising strategy for designing organic materials with integrated optoelectronic properties based on cocrystal engineering has been put forward. By selecting the fluorene (Flu) and the 7,7′,8,8′-tetracyanoquinodimethane (TCNQ) as functional constituents, the Flu-TCNQ cocrystal prepared shows deep red emission at 702 nm, which is comparable to the commercialized red quantum dot. The highest electron mobility of organic field-effect transistor (OFET) based on Flu-TCNQ is 0.32 cm2 V-1s-1. Spectroscopic analysis indicates that the intermolecular driving force contributing to the co-assembly of Flu-TCNQ is mainly charge transfer (CT) interaction, which leads to its different optoelectronic properties from constituents.

Keywords Organic cocrystal      Charge transfer (CT)      Integrated optoelectronic properties      Red emission      n-type charge transport     
Corresponding Author(s): Xiaotao Zhang,Wenping Hu   
Issue Date: 19 May 2022
 Cite this article:   
Mengjia Jiang,Shuyu Li,Chun Zhen, et al. TCNQ-based organic cocrystal integrated red emission and n-type charge transport[J]. Front. Optoelectron., 2022, 15(2): 21.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00022-7
https://academic.hep.com.cn/foe/EN/Y2022/V15/I2/21
1 H. Dong,, X. Fu,, J. Liu,, Z. Wang,, W. Hu,: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25(43), 6158–6183 (2013)
https://doi.org/10.1002/adma.201302514
2 H. Sirringhaus,: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)
https://doi.org/10.1002/adma.201304346
3 H. Uoyama,, K. Goushi,, K. Shizu,, H. Nomura,, C. Adachi,: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)
https://doi.org/10.1038/nature11687
4 S.M. Lee,, J.H. Kwon,, S. Kwon,, K.C. Choi,: A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron. Devices 64(5), 1922–1931 (2017)
https://doi.org/10.1109/TED.2017.2647964
5 Y. Yao,, Y. Chen,, H. Wang,, P. Samorì,: Organic photodetectors based on supramolecular nanostructures. SmartMat. 1(1), e1009 (2020)
https://doi.org/10.1002/smm2.1009
6 V.V. Brus,, J. Lee,, B.R. Luginbuhl,, S.J. Ko,, G.C. Bazan,, T.Q. Nguyen,: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019)
https://doi.org/10.1002/adma.201900904
7 M.A. McCarthy,, B. Liu,, E.P. Donoghue,, I. Kravchenko,, D.Y. Kim,, F. So,, A.G. Rinzler,: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)
https://doi.org/10.1126/science.1203052
8 R. Ding,, M.H. An,, J. Feng,, H.B. Sun,: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments. Laser Photonics Rev. 13(10), 1900009 (2019)
https://doi.org/10.1002/lpor.201900009
9 J. Lin,, Y. Hu,, Y. Lv,, X. Guo,, X. Liu,: Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Sci. Bull. 62(24), 1637–1638 (2017)
https://doi.org/10.1016/j.scib.2017.12.010
10 S. Chénais,, S. Forget,: Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)
https://doi.org/10.1002/pi.3173
11 Z. Qin,, H. Gao,, H. Dong,, W. Hu,: Organic light-emitting transistors entering a new development stage. Adv. Mater. 33(31), e2007149 (2021)
https://doi.org/10.1002/adma.202007149
12 J. Liu,, H. Zhang,, H. Dong,, L. Meng,, L. Jiang,, L. Jiang,, Y. Wang,, J. Yu,, Y. Sun,, W. Hu,, A.J. Heeger,: High mobility emissive organic semiconductor. Nat. Commun. 6(1), 10032 (2015)
https://doi.org/10.1038/ncomms10032
13 M. Melucci,, L. Favaretto,, M. Zambianchi,, M. Durso,, M. Gazzano,, A. Zanelli,, M. Monari,, M.G. Lobello,, F. De Angelis,, V. Biondo,, G. Generali,, S. Troisi,, W. Koopman,, S. Toffanin,, R. Capelli,, M. Muccini,: Molecular tailoring of new thieno(bis) imide-based semiconductors for single layer ambipolar light emitting transistors. Chem. Mater. 25(5), 668–676 (2013)
https://doi.org/10.1021/cm303224a
14 J. Deng,, Y. Xu,, L. Liu,, C. Feng,, J. Tang,, Y. Gao,, Y. Wang,, B. Yang,, P. Lu,, W. Yang,, Y. Ma,: An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm2·V-1·s-1. Chem. Commun. 52(12), 2647 (2016)
https://doi.org/10.1039/C6CC90043G
15 Y. Yomogida,, T. Takenobu,, H. Shimotani,, K. Sawabe,, S.Z. Bisri,, T. Yamao,, S. Hotta,, Y. Iwasa,: Green light emission from the edges of organic single-crystal transistors. Appl. Phys. Lett. 97(17), 173301 (2010)
https://doi.org/10.1063/1.3504690
16 D. Liu,, J. De,, H. Gao,, S. Ma,, Q. Ou,, S. Li,, Z. Qin,, H. Dong,, Q. Liao,, B. Xu,, Q. Peng,, Z. Shuai,, W. Tian,, H. Fu,, X. Zhang,, Y. Zhen,, W. Hu,: Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 142(13), 6332–6339 (2020)
https://doi.org/10.1021/jacs.0c00871
17 T. Kono,, D. Kumaki,, J. Nishida,, T. Sakanoue,, M. Kakita,, H. Tada,, S. Tokito,, Y. Yamashita,: High-performance and light-emitting n-type organic field-effect transistors based on dithienylbenzothiadiazole and related heterocycles. Chem. Mater. 19(6), 1218–1220 (2007)
https://doi.org/10.1021/cm062889+
18 S. Oh,, J.H. Kim,, S.K. Park,, C.H. Ryoo,, S.Y. Park,: Fabrication of pixelated organic light-emitting transistor (OLET) with a pure red-emitting organic semiconductor. Adv. Opt. Mater. 7(23), 1901274 (2019)
https://doi.org/10.1002/adom.201901274
19 W. Zhu,, H. Dong,, Y. Zhen,, W. Hu,: Challenges of organic “cocrystals.”. Sci. China Mater. 58(11), 854–859 (2015)
https://doi.org/10.1007/s40843-015-0099-1
20 Y. Huang,, Z. Wang,, Z. Chen,, Q. Zhang,: Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem. Int. Ed. 58(29), 9696–9711 (2019)
https://doi.org/10.1002/anie.201900501
21 J. Zhang,, W. Xu,, P. Sheng,, G. Zhao,, D. Zhu,: Organic donor–acceptor complexes as novel organic semiconductors. Acc. Chem. Res. 50(7), 1654–1662 (2017)
https://doi.org/10.1021/acs.accounts.7b00124
22 L. Sun,, F. Yang,, X. Zhang,, W. Hu,: Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Mater. Chem. Front. 4(3), 715–728 (2020)
https://doi.org/10.1039/C9QM00760A
23 L. Sun,, Y. Wang,, F. Yang,, X. Zhang,, W. Hu,: Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 31(39), e1902328 (2019)
https://doi.org/10.1002/adma.201902328
24 Y. Wang,, H. Wu,, P. Li,, S. Chen,, L.O. Jones,, M.A. Mosquera,, L. Zhang,, K. Cai,, H. Chen,, X.Y. Chen,, C.L. Stern,, M.R. Wasielewski,, M.A. Ratner,, G.C. Schatz,, J.F. Stoddart,: Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat. Commun. 11(1), 4633 (2020)
https://doi.org/10.1038/s41467-020-18431-7
25 R. Bhowal,, S. Biswas,, A. Thumbarathil,, A.L. Koner,, D. Chopra,: Exploring the relationship between intermolecular interactions and solid-state photophysical properties of organic cocrystals. J. Chem. Phys. 123(14), 9311–9322 (2019)
https://doi.org/10.1021/acs.jpcc.8b10643
26 H.T. Black,, D.F. Perepichka,: Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding. Angew Chem. Int. Ed. 53(8), 2138–2142 (2014)
https://doi.org/10.1002/anie.201310902
27 H. Liu,, Z. Liu,, W. Jiang,, H. Fu,: Tuning the charge transfer properties by optimized donor–acceptor cocrystal for FET applications: from P type to N type. J. Solid State Chem. 274, 47–51 (2019)
https://doi.org/10.1016/j.jssc.2019.03.017
28 Y. Liang,, Y. Qin,, J. Chen,, W. Xing,, Y. Zou,, Y. Sun,, W. Xu,, D. Zhu,: Band engineering and majority carrier switching in isostructural donor–acceptor complexes DPTTA-FXTCNQ crystals (X = 1, 2, 4). Adv. Sci. 7(3), 1902456–1902464 (2019)
https://doi.org/10.1002/advs.201902456
29 S.K. Park,, S. Varghese,, J.H. Kim,, S.J. Yoon,, O.K. Kwon,, B.K. An,, J. Gierschner,, S.Y. Park,: Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 135(12), 4757–4764 (2013)
https://doi.org/10.1021/ja312197b
30 S.K. Park,, J.H. Kim,, T. Ohto,, R. Yamada,, A.O.F. Jones,, D.R. Whang,, I. Cho,, S. Oh,, S.H. Hong,, J.E. Kwon,, J.H. Kim,, Y. Olivier,, R. Fischer,, R. Resel,, J. Gierschner,, H. Tada,, S.Y. Park,: Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 29(36), 1701346 (2017)
https://doi.org/10.1002/adma.201701346
31 C.L. Chiang,, M.T. Wu,, D.C. Dai,, Y.S. Wen,, J.K. Wang,, C.T. Chen,: Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater. 15(2), 231–238 (2005)
https://doi.org/10.1002/adfm.200400102
32 L. Sun,, W. Zhu,, F. Yang,, B. Li,, X. Ren,, X. Zhang,, W. Hu,: Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Phys. Chem. Chem. Phys. 20(9), 6009–6023 (2018)
https://doi.org/10.1039/C7CP07167A
33 L. Jiang,, J. Gao,, E. Wang,, H. Li,, Z. Wang,, W. Hu,, L. Jiang,: Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv. Mater. 20(14), 2735–2740 (2008)
https://doi.org/10.1002/adma.200800341
34 W. Wang,, L. Luo,, P. Sheng,, J. Zhang,, Q. Zhang,: Multifunctional features of organic charge-transfer complexes: advances and perspectives. Chemistry (Weinheim an der Bergstrasse, Germany) 27(2), 464–490 (2021)
https://doi.org/10.1002/chem.202002640
35 Y. Qin,, C. Cheng,, H. Geng,, C. Wang,, W. Hu,, W. Xu,, Z. Shuai,, D. Zhu,: Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Phys. Chem. Chem. Phys. 18(20), 14094–14103 (2016)
https://doi.org/10.1039/C6CP01509C
36 G. Croce,, A. Arrais,, E. Diana,, B. Civalleri,, D. Viterbo,, M. Milanesio,: The interpretation of the short range disorder in the fluorene TCNE crystal structure. Int. J. Mol. Sci. 5(3), 93–100 (2004)
https://doi.org/10.3390/i5030093
37 J. Zhang,, H. Geng,, T.S. Virk,, Y. Zhao,, J. Tan,, C.A. Di,, W. Xu,, K. Singh,, W. Hu,, Z. Shuai,, Y. Liu,, D. Zhu,: Sulfur-bridged annulene-TCNQ co-crystal: a self-assembled “molecular level heterojunction” with air stable ambipolar charge transport behavior. Adv. Mater. 24(19), 2603–2607 (2012)
https://doi.org/10.1002/adma.201200578
38 R. Usman,, A. Khan,, H. Sun,, M. Wang,: Study of charge transfer interaction modes in the mixed donor–acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis. J. Solid State Chem. 266, 112–120 (2018)
https://doi.org/10.1016/j.jssc.2018.07.009
39 T. Wakahara,, K. Nagaoka,, A. Nakagawa,, C. Hirata,, Y. Matsushita,, K. Miyazawa,, O. Ito,, Y. Wada,, M. Takagi,, T. Ishimoto,, M. Tachikawa,, K. Tsukagoshi,: One-dimensional fullerene/porphyrin cocrystals: near-infrared light sensing through component interactions. ACS Appl. Mater. Interfaces 12(2), 2878–2883 (2020)
https://doi.org/10.1021/acsami.9b18784
40 Y. Wang,, W. Zhu,, W. Du,, X. Liu,, X. Zhang,, H. Dong,, W. Hu,: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem. Int. Ed. 57(15), 3963–3967 (2018)
https://doi.org/10.1002/anie.201712949
41 Y. Liang,, W. Xing,, L. Liu,, Y. Sun,, W. Xu,, D. Zhu,: Charge transport behaviors of a novel 2:1 charge transfer complex based on coronene and HAT(CN)6. Org. Electron. 78, 105608 (2020)
https://doi.org/10.1016/j.orgel.2019.105608
42 A. Mandal,, P. Swain,, B. Nath,, S. Sau,, P. Mal,: Unipolar to ambipolar semiconductivity switching in charge transfer cocrystals of 2,7-di-tertbutylpyrene. CrystEngComm. 21(6), 981–989 (2019)
https://doi.org/10.1039/C8CE01806E
43 H. Ye,, G. Liu,, S. Liu,, D. Casanova,, X. Ye,, X. Tao,, Q. Zhang,, Q. Xiong,: Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew Chem. Int. Ed. 57(7), 1928–1932 (2018)
https://doi.org/10.1002/anie.201712104
44 X. Dai,, Z. Zhang,, Y. Jin,, Y. Niu,, H. Cao,, X. Liang,, L. Chen,, J. Wang,, X. Peng,: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014)
https://doi.org/10.1038/nature13829
45 H. Wu,, Y. Sun,, L. Sun,, L. Wang,, X. Zhang,, W. Hu,: Deep insight into the charge transfer interactions in 1,2,4,5-tetracy-anobenzene-phenazine cocrystal. Chin. Chem. Lett. 32(10), 3007–3010 (2021)
https://doi.org/10.1016/j.cclet.2021.03.045
46 J. Tsutsumi,, S. Matsuoka,, S. Inoue,, H. Minemawari,, T. Yamada,, T. Hasegawa,: N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors. J. Mater. Chem. C Mater. Opt. Electron. Dev. 3(9), 1976–1981 (2015)
https://doi.org/10.1039/C4TC02481H
47 H. Geng,, L. Zhu,, Y. Yi,, D. Zhu,, Z. Shuai,: Superexchange induced charge transport in organic donor–acceptor cocrystals and copolymers: a theoretical perspective. Chem. Mater. 31(17), 6424–6434 (2019)
https://doi.org/10.1021/acs.chemmater.9b01545
48 H. Geng,, X. Zheng,, Z. Shuai,, L. Zhu,, Y. Yi,: Understanding the charge transport and polarities in organic donor–acceptor mixed-stack crystals: molecular insights from the super-exchange couplings. Adv. Mater. 27(8), 1443–1449 (2015)
https://doi.org/10.1002/adma.201404412
49 L. Zhu,, H. Geng,, Y. Yi,, Z. Wei,: Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Phys. Chem. Chem. Phys. 19(6), 4418–4425 (2017)
https://doi.org/10.1039/C6CP07417K
[1] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[2] Lauro J. Q. MAIA, Jyothis THOMAS, Yannick LEDEMI, Kummara V. KRISHNAIAH, Denis SELETSKIY, Younès MESSADDEQ, Raman KASHYAP. Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications[J]. Front. Optoelectron., 2018, 11(2): 189-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed