Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 23    https://doi.org/10.1007/s12200-024-00130-6
Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern
Junrui Liang1, Jun Ye1,2,3, Xiaoya Ma1, Yao Lu4, Jun Li1, Jiangming Xu1(), Zilun Chen1,2,3, Jinyong Leng1,2,3, Zongfu Jiang1,2,3, Pu Zhou1()
1. College of Advanced Disciplinary Studies, National University of Defense Technology, Changsha 410073, China
2. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
3. Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
4. Space Engineering University, Beijing 101416, China
 Download: PDF(2651 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.

Keywords High-accuracy      Resolution enhancement      Reconstructive spectrometer      Mode division multiplexing      Photonics lantern     
Corresponding Author(s): Jiangming Xu,Pu Zhou   
About author:

#These authors contributed equally to this work.

Issue Date: 08 August 2024
 Cite this article:   
Junrui Liang,Jun Ye,Xiaoya Ma, et al. Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern[J]. Front. Optoelectron., 2024, 17(3): 23.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00130-6
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/23
1 Z. Yang, , T. Albrow-Owen, , W. Cai, , T. Hasan, : Miniaturization of optical spectrometers. Science. 371 (6528), eabe0722 (2021)
https://doi.org/10.1126/science.abe0722
2 A. Li, , C. Yao, , J. Xia, , H. Wang, , Q. Cheng, , R. Penty, , Y. Fainman, , S. Pan, : Advances in cost-effective integrated spectrometers. Light Sci. Appl. 11 (1), 174 (2022)
https://doi.org/10.1038/s41377-022-00853-1
3 M.J. Murray, , J.B. Murray, , R.T. Schermer, , J.D. McKinney, , B. Redding, : High-speed RF spectral analysis using a Rayleigh backscattering speckle spectrometer. Opt. Express. 31 (13), 20651 (2023)
https://doi.org/10.1364/OE.489060
4 Y. Wan, , X. Fan, , Z. He, : Review on speckle-based spectrum analyzer. Photonic Sens. 11 (2), 187- 202 (2021)
https://doi.org/10.1007/s13320-021-0628-3
5 K. Dong, , J. Li, , T. Zhang, , F. Gu, , Y. Cai, , N. Gupta, , K. Tang, , A. Javey, , J. Yao, , J. Wu, : Single-pixel reconstructive mid-infrared micro-spectrometer. Opt. Express 31 (9), 14367 (2023)
https://doi.org/10.1364/OE.485934
6 Z. Liu, , H. Liao, , L. Yang, , G. Du, , L. Wei, , Y. Wang, , Y. Chen, : Lightweight computational spectrometer enabled by learned high-correlation optical filters. Opt. Express. 31 (14), 23325 (2023)
https://doi.org/10.1364/OE.495087
7 A. Poudel, , P. Bhattarai, , R. Maharjan, , M. Coke, , R.J. Curry, , I.F. Crowe, , A. Dhakal, : Spectrometer based on a compact disordered multi-mode interferometer. Opt. Express. 31 (8), 12624 (2023)
https://doi.org/10.1364/OE.484199
8 Z. Lin, , S. Yu, , Y. Chen, , W. Cai, , B. Lin, , J. Song, , M. Mitchell, , M. Hammood, , J. Jhoja, , N.A.F. Jaeger, , W. Shi, , L. Chrostowski, : High-performance, intelligent, on-chip speckle spectrometer using 2D silicon photonic disordered microring lattice. Optica. 10 (4), 497 (2023)
https://doi.org/10.1364/OPTICA.480014
9 R. Zhu, , Y. Lei, , S. Wan, , Y. Xiong, , Y. Wang, , Y. Chen, , F. Xu, : Compact fiber-integrated scattering device based on mixedphase TiO2 for speckle spectrometer. Opt. Lett. 47 (7), 1606 (2022)
https://doi.org/10.1364/OL.453384
10 B. Redding, , M. Alam, , M. Seifert, , H. Cao, : High-resolution and broadband all-fiber spectrometers. Optica 1 (3), 175 (2014)
https://doi.org/10.1364/OPTICA.1.000175
11 N. Coluccelli, , M. Cassinerio, , B. Redding, , H. Cao, , P. Laporta, , G. Galzerano, : The optical frequency comb fibre spectrometer. Nat. Commun. 7 (1), 12995 (2016)
https://doi.org/10.1038/ncomms12995
12 H. Cao, : Perspective on speckle spectrometers. J. Opt. 19 (6), 060402 (2017)
https://doi.org/10.1088/2040-8986/aa7251
13 F. Feng, , J. Gan, , P. Chen, , W. Lin, , G. Chen, , C. Min, , X. Yuan, , M. Somekh, : AI-assisted spectrometer based on multi-mode optical fiber speckle patterns. Opt. Commun. 522, 128675 (2022)
https://doi.org/10.1016/j.optcom.2022.128675
14 W. Demtröder, : Laser Spectroscopy. Springer, Berlin Heidelberg (2008)
15 H. Cao, , T. Čižmár, , S. Turtaev, , T. Tyc, , S. Rotter, : Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond. Adv. Opt. Photonics. 15 (2), 524 (2023)
https://doi.org/10.1364/AOP.484298
16 B. Redding, , S.M. Popoff, , H. Cao, : All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express. 21 (5), 6584 (2013)
https://doi.org/10.1364/OE.21.006584
17 J. Liang, , J. Ye, , Y. Ke, , Y. Zhang, , X. Ma, , J. He, , J. Li, , J. Xu, , J. Leng, , P. Zhou, : Polarization transmission matrix enabled high-accuracy, large-bandwidth speckle-based reconstructive spectrometer. Appl. Phys. Lett. 124 (7), 071111 (2024)
https://doi.org/10.1063/5.0197612
18 J. Li, , Y. Yuan, , Y. Cai, : High-precision clock date recovery for optical wireless communications using orbital-angular-momentum-based mode division multiplexing. Opt. Lett. 48 (11), 3107- 3110 (2023)
https://doi.org/10.1364/OL.492859
19 Y. Geng, , Y. Xiao, , Q. Bai, , X. Han, , W. Dong, , W. Wang, , J. Xue, , B. Yao, , G. Deng, , Q. Zhou, , K. Qiu, , J. Xu, , H. Zhou, : Wavelength-division multiplexing communications using integrated soliton microcomb laser source. Opt. Lett. 47 (23), 6129- 6132 (2022)
https://doi.org/10.1364/OL.475075
20 S.F. Liew, , B. Redding, , M.A. Choma, , H.D. Tagare, , H. Cao, : Broadband multimode fiber spectrometer. Opt. Lett. 41 (9), 2029 (2016)
https://doi.org/10.1364/OL.41.002029
21 Z. Meng, , J. Li, , C. Yin, , T. Zhang, , Z. Yu, , M. Tang, , W. Tong, , K. Xu, : Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing. AIP Adv. 9 (1), 015004 (2019)
https://doi.org/10.1063/1.5052276
22 M. Piels, , D. Zibar, : Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Sci. Rep. 7 (1), 43454 (2017)
https://doi.org/10.1038/srep43454
23 Z. Zheng, , S. Zhu, , Y. Chen, , H. Chen, , J. Chen, : Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electronic Science 1 (11), 220012- 220022 (2022)
https://doi.org/10.29026/oes.2022.220012
24 Y. Wang, , C. Zhang, , S. Fu, , R. Zhang, , L. Shen, , M. Tang, , D. Liu, : Design of elliptical-core five-mode group selective photonic lantern over the C-band. Opt. Express 27 (20), 27979- 27990 (2019)
https://doi.org/10.1364/OE.27.027979
25 D. Choudhury, , D.K. McNicholl, , A. Repetti, , I. Gris-Sánchez, , S. Li, , D.B. Phillips, , G. Whyte, , T.A. Birks, , Y. Wiaux, , R.R. Thomson, : Computational optical imaging with a photonic lantern. Nat. Commun. 11 (1), 5217 (2020)
https://doi.org/10.1038/s41467-020-18818-6
26 Y. Lu, , W. Liu, , Z. Chen, , M. Jiang, , Q. Zhou, , J. Zhang, , C. Li, , J. Chai, , Z. Jiang, : Spatial mode control based on photonic lanterns. Opt. Express 29 (25), 41788- 41797 (2021)
https://doi.org/10.1364/OE.440326
27 Y. Lu, , Z. Jiang, , Z. Chen, , M. Jiang, , J. Yang, , Q. Zhou, , J. Zhang, , D. Zhang, , J. Chai, , H. Yang, , W. Liu, : High-power orbital angular momentum beam generation using adaptive control system based on mode selective photonic lantern. J. Lightwave Technol. 41 (17), 5607- 5613 (2023)
https://doi.org/10.1109/JLT.2023.3266255
28 D. Yi, , Y. Zhang, , X. Wu, , H.K. Tsang, : Integrated multimode waveguide with photonic lantern for speckle spectroscopy. IEEE J. Quantum Electron. 57 (1), 1- 8 (2021)
https://doi.org/10.1109/JQE.2020.3037410
29 Y. Wan, , X. Fan, , B. Xu, , Z. He, : Reconstructive spectrum analyzer with high-resolution and large-bandwidth using physicalmodel and data-driven model combined neural network. Laser Photonics Rev. 17 (7), 2201018 (2023)
https://doi.org/10.1002/lpor.202201018
30 M. Veettikazhy, , A. Kragh Hansen, , D. Marti, , S. Mark Jensen, , A. LykkeBorre, , E. Ravn Andresen, , K. Dholakia, , P. Eskil Andersen, : BPM-Matlab: an open-source optical propagation simulation tool in MATLAB. Opt. Express. 29 (8), 11819 (2021)
https://doi.org/10.1364/OE.420493
31 J. Liang, , J. Xu, , Y. Zhang, , J. Ye, , S. Li, , X. Ma, , Y. Ke, , J. Leng, , P. Zhou, : Hundred-Watt-level, linearly polarized multi-wave-length fiber oscillator with wavelength, interval, and intensity tunability. J. Lightwave Technol. 42 (2), 882- 890 (2024)
https://doi.org/10.1109/JLT.2023.3317427
[1] Jianping LI, Zhaohui LI. Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link[J]. Front. Optoelectron., 2019, 12(1): 41-51.
[2] Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Front. Optoelectron., 2019, 12(1): 31-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed