|
|
Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern |
Junrui Liang1, Jun Ye1,2,3, Xiaoya Ma1, Yao Lu4, Jun Li1, Jiangming Xu1( ), Zilun Chen1,2,3, Jinyong Leng1,2,3, Zongfu Jiang1,2,3, Pu Zhou1( ) |
1. College of Advanced Disciplinary Studies, National University of Defense Technology, Changsha 410073, China 2. Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China 3. Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China 4. Space Engineering University, Beijing 101416, China |
|
|
Abstract This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.
|
Keywords
High-accuracy
Resolution enhancement
Reconstructive spectrometer
Mode division multiplexing
Photonics lantern
|
Corresponding Author(s):
Jiangming Xu,Pu Zhou
|
About author: #These authors contributed equally to this work. |
Issue Date: 08 August 2024
|
|
1 |
Z. Yang, , T. Albrow-Owen, , W. Cai, , T. Hasan, : Miniaturization of optical spectrometers. Science. 371 (6528), eabe0722 (2021)
https://doi.org/10.1126/science.abe0722
|
2 |
A. Li, , C. Yao, , J. Xia, , H. Wang, , Q. Cheng, , R. Penty, , Y. Fainman, , S. Pan, : Advances in cost-effective integrated spectrometers. Light Sci. Appl. 11 (1), 174 (2022)
https://doi.org/10.1038/s41377-022-00853-1
|
3 |
M.J. Murray, , J.B. Murray, , R.T. Schermer, , J.D. McKinney, , B. Redding, : High-speed RF spectral analysis using a Rayleigh backscattering speckle spectrometer. Opt. Express. 31 (13), 20651 (2023)
https://doi.org/10.1364/OE.489060
|
4 |
Y. Wan, , X. Fan, , Z. He, : Review on speckle-based spectrum analyzer. Photonic Sens. 11 (2), 187- 202 (2021)
https://doi.org/10.1007/s13320-021-0628-3
|
5 |
K. Dong, , J. Li, , T. Zhang, , F. Gu, , Y. Cai, , N. Gupta, , K. Tang, , A. Javey, , J. Yao, , J. Wu, : Single-pixel reconstructive mid-infrared micro-spectrometer. Opt. Express 31 (9), 14367 (2023)
https://doi.org/10.1364/OE.485934
|
6 |
Z. Liu, , H. Liao, , L. Yang, , G. Du, , L. Wei, , Y. Wang, , Y. Chen, : Lightweight computational spectrometer enabled by learned high-correlation optical filters. Opt. Express. 31 (14), 23325 (2023)
https://doi.org/10.1364/OE.495087
|
7 |
A. Poudel, , P. Bhattarai, , R. Maharjan, , M. Coke, , R.J. Curry, , I.F. Crowe, , A. Dhakal, : Spectrometer based on a compact disordered multi-mode interferometer. Opt. Express. 31 (8), 12624 (2023)
https://doi.org/10.1364/OE.484199
|
8 |
Z. Lin, , S. Yu, , Y. Chen, , W. Cai, , B. Lin, , J. Song, , M. Mitchell, , M. Hammood, , J. Jhoja, , N.A.F. Jaeger, , W. Shi, , L. Chrostowski, : High-performance, intelligent, on-chip speckle spectrometer using 2D silicon photonic disordered microring lattice. Optica. 10 (4), 497 (2023)
https://doi.org/10.1364/OPTICA.480014
|
9 |
R. Zhu, , Y. Lei, , S. Wan, , Y. Xiong, , Y. Wang, , Y. Chen, , F. Xu, : Compact fiber-integrated scattering device based on mixedphase TiO2 for speckle spectrometer. Opt. Lett. 47 (7), 1606 (2022)
https://doi.org/10.1364/OL.453384
|
10 |
B. Redding, , M. Alam, , M. Seifert, , H. Cao, : High-resolution and broadband all-fiber spectrometers. Optica 1 (3), 175 (2014)
https://doi.org/10.1364/OPTICA.1.000175
|
11 |
N. Coluccelli, , M. Cassinerio, , B. Redding, , H. Cao, , P. Laporta, , G. Galzerano, : The optical frequency comb fibre spectrometer. Nat. Commun. 7 (1), 12995 (2016)
https://doi.org/10.1038/ncomms12995
|
12 |
H. Cao, : Perspective on speckle spectrometers. J. Opt. 19 (6), 060402 (2017)
https://doi.org/10.1088/2040-8986/aa7251
|
13 |
F. Feng, , J. Gan, , P. Chen, , W. Lin, , G. Chen, , C. Min, , X. Yuan, , M. Somekh, : AI-assisted spectrometer based on multi-mode optical fiber speckle patterns. Opt. Commun. 522, 128675 (2022)
https://doi.org/10.1016/j.optcom.2022.128675
|
14 |
W. Demtröder, : Laser Spectroscopy. Springer, Berlin Heidelberg (2008)
|
15 |
H. Cao, , T. Čižmár, , S. Turtaev, , T. Tyc, , S. Rotter, : Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond. Adv. Opt. Photonics. 15 (2), 524 (2023)
https://doi.org/10.1364/AOP.484298
|
16 |
B. Redding, , S.M. Popoff, , H. Cao, : All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express. 21 (5), 6584 (2013)
https://doi.org/10.1364/OE.21.006584
|
17 |
J. Liang, , J. Ye, , Y. Ke, , Y. Zhang, , X. Ma, , J. He, , J. Li, , J. Xu, , J. Leng, , P. Zhou, : Polarization transmission matrix enabled high-accuracy, large-bandwidth speckle-based reconstructive spectrometer. Appl. Phys. Lett. 124 (7), 071111 (2024)
https://doi.org/10.1063/5.0197612
|
18 |
J. Li, , Y. Yuan, , Y. Cai, : High-precision clock date recovery for optical wireless communications using orbital-angular-momentum-based mode division multiplexing. Opt. Lett. 48 (11), 3107- 3110 (2023)
https://doi.org/10.1364/OL.492859
|
19 |
Y. Geng, , Y. Xiao, , Q. Bai, , X. Han, , W. Dong, , W. Wang, , J. Xue, , B. Yao, , G. Deng, , Q. Zhou, , K. Qiu, , J. Xu, , H. Zhou, : Wavelength-division multiplexing communications using integrated soliton microcomb laser source. Opt. Lett. 47 (23), 6129- 6132 (2022)
https://doi.org/10.1364/OL.475075
|
20 |
S.F. Liew, , B. Redding, , M.A. Choma, , H.D. Tagare, , H. Cao, : Broadband multimode fiber spectrometer. Opt. Lett. 41 (9), 2029 (2016)
https://doi.org/10.1364/OL.41.002029
|
21 |
Z. Meng, , J. Li, , C. Yin, , T. Zhang, , Z. Yu, , M. Tang, , W. Tong, , K. Xu, : Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing. AIP Adv. 9 (1), 015004 (2019)
https://doi.org/10.1063/1.5052276
|
22 |
M. Piels, , D. Zibar, : Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Sci. Rep. 7 (1), 43454 (2017)
https://doi.org/10.1038/srep43454
|
23 |
Z. Zheng, , S. Zhu, , Y. Chen, , H. Chen, , J. Chen, : Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electronic Science 1 (11), 220012- 220022 (2022)
https://doi.org/10.29026/oes.2022.220012
|
24 |
Y. Wang, , C. Zhang, , S. Fu, , R. Zhang, , L. Shen, , M. Tang, , D. Liu, : Design of elliptical-core five-mode group selective photonic lantern over the C-band. Opt. Express 27 (20), 27979- 27990 (2019)
https://doi.org/10.1364/OE.27.027979
|
25 |
D. Choudhury, , D.K. McNicholl, , A. Repetti, , I. Gris-Sánchez, , S. Li, , D.B. Phillips, , G. Whyte, , T.A. Birks, , Y. Wiaux, , R.R. Thomson, : Computational optical imaging with a photonic lantern. Nat. Commun. 11 (1), 5217 (2020)
https://doi.org/10.1038/s41467-020-18818-6
|
26 |
Y. Lu, , W. Liu, , Z. Chen, , M. Jiang, , Q. Zhou, , J. Zhang, , C. Li, , J. Chai, , Z. Jiang, : Spatial mode control based on photonic lanterns. Opt. Express 29 (25), 41788- 41797 (2021)
https://doi.org/10.1364/OE.440326
|
27 |
Y. Lu, , Z. Jiang, , Z. Chen, , M. Jiang, , J. Yang, , Q. Zhou, , J. Zhang, , D. Zhang, , J. Chai, , H. Yang, , W. Liu, : High-power orbital angular momentum beam generation using adaptive control system based on mode selective photonic lantern. J. Lightwave Technol. 41 (17), 5607- 5613 (2023)
https://doi.org/10.1109/JLT.2023.3266255
|
28 |
D. Yi, , Y. Zhang, , X. Wu, , H.K. Tsang, : Integrated multimode waveguide with photonic lantern for speckle spectroscopy. IEEE J. Quantum Electron. 57 (1), 1- 8 (2021)
https://doi.org/10.1109/JQE.2020.3037410
|
29 |
Y. Wan, , X. Fan, , B. Xu, , Z. He, : Reconstructive spectrum analyzer with high-resolution and large-bandwidth using physicalmodel and data-driven model combined neural network. Laser Photonics Rev. 17 (7), 2201018 (2023)
https://doi.org/10.1002/lpor.202201018
|
30 |
M. Veettikazhy, , A. Kragh Hansen, , D. Marti, , S. Mark Jensen, , A. LykkeBorre, , E. Ravn Andresen, , K. Dholakia, , P. Eskil Andersen, : BPM-Matlab: an open-source optical propagation simulation tool in MATLAB. Opt. Express. 29 (8), 11819 (2021)
https://doi.org/10.1364/OE.420493
|
31 |
J. Liang, , J. Xu, , Y. Zhang, , J. Ye, , S. Li, , X. Ma, , Y. Ke, , J. Leng, , P. Zhou, : Hundred-Watt-level, linearly polarized multi-wave-length fiber oscillator with wavelength, interval, and intensity tunability. J. Lightwave Technol. 42 (2), 882- 890 (2024)
https://doi.org/10.1109/JLT.2023.3317427
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|