Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (1) : 41-51    https://doi.org/10.1007/s12200-018-0836-7
REVIEW ARTICLE
Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link
Jianping LI1, Zhaohui LI2()
1. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
2. State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(3968 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As one solution to implement the large-capacity space division multiplexing (SDM) transmission systems, the mode division multiplexing (MDM) has gained much attention recently. The vector mode (VM), which is the eigenmode of the optical fiber, has also been adopted to realize the optical communications including the transmission over free-space optical (FSO) and optical fiber links. Considering the concerns on the short-reach optical interconnects, the low cost and high integration technologies should be developed. Direct detection (DD) with higher-order modulation formats in combination of MDM technologies could offer an available trade-off in system performance and complexity. We review demonstrations of FSO and fiber high-speed data transmission based on the VM MDM (VMDM) technologies. The special VMs, cylindrical vector beams (CVB), have been generated by the q-plate (QP) and characterized accordingly. And then they were used to implement the VMDM transmission with direct-detection orthogonal frequency division multiplexing (DD-OFDM). These demonstrations show the potential of VMDM-DD-OFDM technology in the large-capacity short-reach transmission links.

Keywords space division multiplexing (SDM)      mode division multiplexing (MDM)      few-mode fiber (FMF)      vector mode (VM)      cylindrical vector beam (CVB)      orthogonal frequency division multiplexing (OFDM)      direct detection (DD)      optical interconnect     
Corresponding Author(s): Zhaohui LI   
Just Accepted Date: 27 July 2018   Online First Date: 13 September 2018    Issue Date: 29 April 2019
 Cite this article:   
Jianping LI,Zhaohui LI. Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link[J]. Front. Optoelectron., 2019, 12(1): 41-51.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0836-7
https://academic.hep.com.cn/foe/EN/Y2019/V12/I1/41
Fig.1  (a) Schematic setup for q-plate (QP) characterization by using (i) spatial optical power meter (SOPM), (ii) common OPM, and (iii) charged-coupled device (CCD) camera. L: lens; LP: linear polarizer. And the normalized power vs. applied Vb based on (b) SOPM and (c) OPM. ROR: regular operational region; POR: partial operational region and NOR: non-operational region [14]
Fig.2  Experiment results of VM characterization [14]
Fig.3  Fig. 3 Typical Poincaré spheres for (a) l = 0, (b) l = 1, (c) l = - 1 and (d) l = 2 respectively [20]
Fig.4  Schematic of effective conversion between different VMs. COL: collimator [20]
Fig.5  Insets (A1)/(A2)−(E1)/(E2) show the intensity profiles of typical VMs labeled in Fig. 4. Insets (b1)/(b2)−(e1)/(e2) indicate the polarization distribution of the these VMs [20]
Fig.6  Mode crosstalk of different VMs [20]
Fig.7  Experimental setup for VMDM-based optical transmission in FSO link. IM: intensity modulator; AWG: arbitrary waveform generator; EDFA: Erbium-doped fiber amplifier; PC: polarization controller; SMF: single mode fiber; PBS: polarization beam splitter; TOF: tunable optical filter; VOA: variable optical attenuator; PD: photo-detector; OSC: oscilloscope [14]
Fig.8  (a) Bit-error-ratio (BER) performance of the two-mode VMDM transmission. B2B: back-to-back; (b) constellations for the cases (i, ii, iii and iv) dotted-circle in Fig. 7 when the received optical power is -14 dBm [14]
Fig.9  Schematic of four-mode VMDM demonstration. Intensity profiles of (a) the 4 multiplexed VMs, (b) the demultiplexed HE21e and HE21o channels, (c) the un-demultiplexed TE01 and TM01 modes, (d) the demultiplexed VMs of TE01 and TM01 modes, and (e) the un-demultiplexed HE21e and HE21o modes [20]
Fig.10  (a) BER performance of VMDM transmission with 2 channels (2 Chs) and 4 channels (4 Chs), respectively; (b) power penalties for the cases shown in Fig. 10(a) [20]
Fig.11  Demonstration of multichannel VMDM transmission. OFCG: optical frequency comb generator; RF: ratio frequency; WSS: wavelength selective switch; EA: electrical amplifier. (i) Intensity profile of two multiplexed VMs, (ii) spectrum of OFCG after shaping by the WSS [21]
Fig.12  (a) Measured crosstalk; (b) BER performances [21]
Fig.13  (a) Experiment setup for CVB performance characterization. FMF: four-mode few-mode fiber; PC-FMF: polarization controller fabricated by four-mode fiber; PG: polarization grating; QWP: quarter-wave plate. (i) Intensity profile of converted VM by QP. (b) Power ratio between the two basic states with transmission over different distances. (c) (ii) and (iii) are the intensity profiles of the two orthogonal states after 5 m FMF propagation; (iv) and (v) the interference patterns corresponding to the (ii) and (iii), respectively. (d) Index profile of the used FMF
vector modes 5 m FMF 100 m FMF
TE01 TM01 TE01 TM01
TE01 0 18.5 0 13.7
TM01 16.8 0 12.5 0
Tab.1  Modal isolation (dB) for CVBs transmission over the used FMF.
Fig.14  Demonstrations of VMDM-DD-OFDM transmission over FMF link. Intensity profiles: (i) the unconverted fundamental mode, (ii) the converted CVBs, (iii) output CVBs after transmission 100 m FMF, and (iv) the de-multiplexed CVBs [23]
Fig.15  BER performances of VMDM transmission over FMF link of length (a) 5 m with 16QAM; (b) 100 m with QPSK [23]
1 DKilper, K Bergman, V W SChan, IMonga, GPorter, KRauschenbach. Optical networks come of age. Optics and Photonics News, 2014, 25(9): 50–57
https://doi.org/10.1364/OPN.25.9.000050
2 DRichardson, J Fini, LNelson. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
3 PWinzer. Spatial multiplexing in fiber optics: The 10 ´ scaling of metro/core capacities. Bell Labs Technical Journal, 2014, 19: 22–30
https://doi.org/10.15325/BLTJ.2014.2347431
4 GLi, N Bai, NZhao, CXia. Space-division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics, 2014, 6(4): 413–487
https://doi.org/10.1364/AOP.6.000413
5 MFiorani, M Tornatore, JChen, LWosinska, BMukherjee. Spatial division multiplexing for high capacity optical interconnects in modular data centers. Journal of Optical Communications and Networking, 2017, 9(2): A143–A153
https://doi.org/10.1364/JOCN.9.00A143
6 BFranz, H Bülow. Mode group division multiplexing in graded-index multimode fibers. Bell Labs Technical Journal, 2013, 18(3): 153–172
https://doi.org/10.1002/bltj.21632
7 KBenyahya, C Simonneau, AGhazisaeidi, NBarre, PJian, J F Morizur, G Labroille, MBigot, PSillard, J GProvost, HDebregeas, JRenaudier, GCharlet. Multiterabit transmission over OM2 multimode fiber with wavelength and mode group multiplexing and direct detection. Journal of Lightwave Technology, 2018, 36(2): 355–360
https://doi.org/10.1109/JLT.2017.2779825
8 JLuo, J Li, QSui, ZLi, C Lu. 40 Gb/s mode-division multiplexed DD-OFDM transmission over standard multi-mode fiber. IEEE Photonics Journal, 2016, 8(3): 7905207
https://doi.org/10.1109/JPHOT.2016.2571981
9 HWen, C Xia, A Vel’azquez-Ben’ıtez, NChand, J EAntonio-Lopez, BHuang, HLiu, H Zheng, PSillard, XLiu, F Effenberger, RAmezcua-Correa, GLi. First demonstration of six-mode PON achieving a record gain of 4 dB in upstream transmission loss budget. Journal of Lightwave Technology, 2016, 34(8): 1990–1996
https://doi.org/10.1109/JLT.2015.2503121
10 AWillner, H Huang, YYan, YRen, N Ahmed, GXie, CBao, L Li, YCao, ZZhao, J Wang, M P JLavery, MTur, S Ramachandran, A FMolisch, NAshrafi, SAshrafi. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106
https://doi.org/10.1364/AOP.7.000066
11 TLei, M Zhang, YLi, PJia, G N Liu, X Xu, ZLi, CMin, J Lin, CYu, HNiu, X Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light, Science & Applications, 2015, 4(3): e257
https://doi.org/10.1038/lsa.2015.30
12 AWang, L Zhu, LWang, JAi, S Chen, JWang. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047
https://doi.org/10.1364/OE.26.010038 pmid: 29715946
13 GMilione, M P Lavery, H Huang, YRen, GXie, T A Nguyen, E Karimi, LMarrucci, D ANolan, R RAlfano, A EWillner. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Optics Letters, 2015, 40(9): 1980–1983
https://doi.org/10.1364/OL.40.001980 pmid: 25927763
14 JZhang, F Li, JLi, YFeng, Z Li. 120 Gbit/s 2× 2 vector-modes-division-multiplexing DD-OFDM-32QAM free-space transmission. IEEE Photonics Journal, 2016, 8(6): 7907008
https://doi.org/10.1109/JPHOT.2016.2622859
15 LWang, R M Nejad, A Corsi, JLin, YMessaddeq, LRusch, SLaRochelle. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Optics Express, 2017, 25(10): 11736–11749
https://doi.org/10.1364/OE.25.011736 pmid: 28788733
16 L ARusch, S Larochelle. Fiber transmission demonstrations in vector mode space division multiplexing, Frontiers of Optoelectronics, 2018, 11(2): 155–162
https://doi.org/10.1007/s12200-018-0812-2
17 WQiao, T Lei, ZWu, SGao, Z Li, XYuan. Approach to multiplexing fiber communication with cylindrical vector beams. Optics Letters, 2017, 42(13): 2579–2582
https://doi.org/10.1364/OL.42.002579 pmid: 28957289
18 JLiu, S Li, LZhu, A DWang, SChen, C Klitis, CDu, QMo, M Sorel, S YYu, X LCai, JWang. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light, Science & Applications, 2018, 7(3): 17148
https://doi.org/10.1038/lsa.2017.148
19 GMilione, S Evans, D ANolan, R RAlfano. Higher order Pancharatnam-Berry phase and the angular momentum of light. Physical Review Letters, 2012, 108(19): 190401
https://doi.org/10.1103/PhysRevLett.108.190401 pmid: 23003011
20 JZhang, F Li, JLi, ZLi. 95.16-Gb/s mode-division-multiplexing signal transmission in free-space enabled by effective-conversion of vector beams. IEEE Photonics Journal, 2017, 9(4): 1–9
21 JZhang, F Li, JLi, ZLi. 228 Gb/s vector-mode-division-multiplexing signal transmission in free-space based on optical frequency comb. In: Proceedings of 2017 16th International Conference on Optical Communications and Networks (ICOCN). 2017, paper. 391
22 SRamachandran, P Kristensen, M FYan. Generation and propagation of radially polarized beams in optical fibers. Optics Letters, 2009, 34(16): 2525–2527
https://doi.org/10.1364/OL.34.002525 pmid: 19684837
23 JLi, J Zhang, FLi, XHuang, SGao, Z Li. DD-OFDM transmission over few-mode fiber based on direct vector mode multiplexing. Optics Express, 2018, 26(14): 18749–18757
https://doi.org/10.1364/OE.26.018749
[1] Lavish KANSAL, Vishal SHARMA, Jagjit Singh MALHOTRA. MIMO-WiMAX system incorporated with diverse transformation for 5G applications[J]. Front. Optoelectron., 2019, 12(3): 296-310.
[2] Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Front. Optoelectron., 2019, 12(1): 31-40.
[3] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[4] Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
[5] Xing ZHENG, Jinlong WEI, Roger Philip GIDDINGS, Jianming TANG. Simplified adaptively modulated optical OFDM modems using subcarrier modulation with added input/output reconfigurability[J]. Front Optoelec, 2012, 5(2): 187-194.
[6] Yiwen RONG, Yijie HUO, Edward T. FEI, Marco FIORENTINO, Michael R.T. TAN, Tomasz OCHALSKI, Guillaume HUYET, Lars THYLEN, Marek CHACINSKI, Theodore I. KAMINS, James S. HARRIS. High speed optical modulation in Ge quantum wells using quantum confined stark effect[J]. Front Optoelec, 2012, 5(1): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed