Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (4) : 36    https://doi.org/10.1007/s12200-024-00139-x
Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators
Huanjie Cheng1, Guosheng Lin1, Di Xia1, Liyang Luo1, Siqi Lu1, Changyuan Yu2, Bin Zhang1()
. Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
. Photonics Research Center, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
 Download: PDF(4469 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band. This device achieves both phase-matching and group velocity matching in two separated anomalous dispersion regions, enabling phase-locked, two-color solitons in the MIR region with a commercial 2-μm CW laser as the pump source. Moreover, the spectral locking of the two-color soliton enhances pump wavelength selectivity, providing precise control over soliton dynamics. By leveraging the dispersion characteristics of the SCDR microresonator, we have demonstrated a multi-octave-spanning, two-color soliton microcomb, covering a spectral range from 1156.07 to 5054.95 nm (200 THz) at a -40 dB level, highlighting the versatility and broad applicability of our approach. And the proposed multi-octave MIR frequency comb is relevant for applications such as dual-comb spectroscopy and trace-gas sensing.

Keywords Mid-infrared      Kerr microcombs      Two-color soliton      Multi-octave      Chalcogenide glasses     
Corresponding Author(s): Bin Zhang   
Issue Date: 19 November 2024
 Cite this article:   
Huanjie Cheng,Guosheng Lin,Di Xia, et al. Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators[J]. Front. Optoelectron., 2024, 17(4): 36.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00139-x
https://academic.hep.com.cn/foe/EN/Y2024/V17/I4/36
1 N. Picqué,, T.W. Hänsch,: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
https://doi.org/10.1038/s41566-018-0347-5
2 A. Schliesser,, N. Picqué,, T.W. Hänsch,: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
https://doi.org/10.1038/nphoton.2012.142
3 T.J. Kippenberg,, R. Holzwarth,, S.A. Diddams,: Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)
https://doi.org/10.1126/science.1193968
4 A.L. Gaeta,, M. Lipson,, T.J. Kippenberg,: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)
https://doi.org/10.1038/s41566-019-0358-x
5 Y. Guo,, J. Wang,, Z. Han,, K. Wada,, L.C. Kimerling,, A.M. Agarwal,, J. Michel,, Z. Zheng,, G. Li,, L. Zhang,: Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics 7(8), 1461–1467 (2018)
https://doi.org/10.1515/nanoph-2017-0131
6 E.A. Anashkina,, M.P. Marisova,, A.A. Sorokin,, A.V. Andrianov,: Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators. Photonics 6(2), 55 (2019)
https://doi.org/10.3390/photonics6020055
7 S. Lu,, G. Lin,, D. Xia,, Z. Wang,, L. Luo,, Z. Li,, B. Zhang,: Broadband mid-infrared frequency comb in integrated chalcogenide microresonator. Photonics 10(6), 628 (2023)
https://doi.org/10.3390/photonics10060628
8 H. Lin,, Z. Luo,, T. Gu,, L.C. Kimerling,, K. Wada,, A. Agarwal,, J. Hu,: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)
https://doi.org/10.1515/nanoph-2017-0085
9 G. Moille,, Q. Li,, S. Kim,, D. Westly,, K. Srinivasan,: Phasedlocked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43(12), 2772–2775 (2018)
https://doi.org/10.1364/OL.43.002772
10 O. Melchert,, S. Willms,, U. Morgner,, I. Babushkin,, A. Demircan,: Crossover from two-frequency pulse compounds to escaping solitons. Sci. Rep. 11(1), 11190 (2021)
https://doi.org/10.1038/s41598-021-90705-6
11 O. Melchert,, S. Willms,, S. Bose,, A. Yulin,, B. Roth,, F. Mitschke,, U. Morgner,, I. Babushkin,, A. Demircan,: Soliton molecules with two frequencies. Phys. Rev. Lett. 123(24), 243905 (2019)
https://doi.org/10.1103/PhysRevLett.123.243905
12 J.P. Lourdesamy,, A.F.J. Runge,, T.J. Alexander,, D.D. Hudson,, A. Blanco-Redondo,, C.M. de Sterke,: Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18(1), 59–66 (2022)
https://doi.org/10.1038/s41567-021-01400-2
13 R. Luo,, H. Liang,, Q. Lin,: Multicolor cavity soliton. Opt. Express 24(15), 16777–16787 (2016)
https://doi.org/10.1364/OE.24.016777
14 B.J. Eggleton,, B. Luther-Davies,, K. Richardson,: Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)
https://doi.org/10.1038/nphoton.2011.309
15 C.R. Petersen,, U. Møller,, I. Kubat,, B. Zhou,, S. Dupont,, J. Ramsay,, T. Benson,, S. Sujecki,, N. Abdel-Moneim,, Z. Tang,, D. Furniss,, A. Seddon,, O. Bang,: Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultrahigh NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830–834 (2014)
https://doi.org/10.1038/nphoton.2014.213
16 D.G. Kim,, S. Han,, J. Hwang,, I.H. Do,, D. Jeong,, J.H. Lim,, Y.H. Lee,, M. Choi,, Y.H. Lee,, D.Y. Choi,, H. Lee,: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun.Commun. 11(1), 5933 (2020)
https://doi.org/10.1038/s41467-020-19799-2
17 D. Xia,, Y. Huang,, B. Zhang,, P. Zeng,, J. Zhao,, Z. Yang,, S. Sun,, L. Luo,, G. Hu,, D. Liu,, Z. Wang,, Y. Li,, H. Guo,, Z. Li,: Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev. 16(4), 2100443 (2022)
https://doi.org/10.1002/lpor.202100443
18 D. Xia,, Z. Yang,, P. Zeng,, B. Zhang,, J. Wu,, Z. Wang,, J. Zhao,, J. Huang,, L. Luo,, D. Liu,, S. Yang,, H. Guo,, Z. Li,: Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev. 17(3), 2200219 (2023)
https://doi.org/10.1002/lpor.202200219
19 D. Xia,, J. Zhao,, H. Cheng,, Z. Wang,, J. Huang,, L. Luo,, D. Liu,, S. Yang,, B. Zhang,, Z. Li,: Energy dissipation engineering for widely tunable (1.2–2.1 μm) optical parametric oscillation in integrated chalcogenide microresonators. Laser Photonics Rev. (2024)
https://doi.org/10.1002/lpor.202301098
20 W. Shen,, P. Zeng,, Z. Yang,, D. Xia,, J. Du,, B. Zhang,, K. Xu,, Z. He,, Z. Li,: Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photon. Res. 8(9), 1484–1490 (2020)
https://doi.org/10.1364/PRJ.398957
21 J. Li,, Y. Liu,, Y. Meng,, K. Xu,, J. Du,, F. Wang,, Z. He,, Q. Song,: 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett. 30(5), 471–474 (2018)
https://doi.org/10.1109/LPT.2018.2799194
22 Y. Yu,, X. Gai,, P. Ma,, K. Vu,, Z. Yang,, R. Wang,, D.Y. Choi,, S. Madden,, B. Luther-Davies,: Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41(5), 958–961 (2016)
https://doi.org/10.1364/OL.41.000958
23 D. Kong,, Y. Liu,, Z. Ren,, Y. Jung,, C. Kim,, Y. Chen,, N.V. Wheeler,, M.N. Petrovich,, M. Pu,, K. Yvind,, M. Galili,, L.K. Oxenløwe,, D.J. Richardson,, H. Hu,: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. Commun. 13(1), 4139 (2022)
https://doi.org/10.1038/s41467-022-31884-2
24 D. Xia,, Y. Huang,, B. Zhang,, Z. Yang,, P. Zeng,, H. Shang,, H. Cheng,, L. Liu,, M. Zhang,, Y. Zhu,, Z. Li,: On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Front. Phys. 9, 598091 (2021)
https://doi.org/10.3389/fphy.2021.598091
25 I. Oreshnikov,, O. Melchert,, S. Willms,, S. Bose,, I. Babushkin,, A. Demircan,, U. Morgner,, A. Yulin,: Cherenkov radiation and scattering of external dispersive waves by two-color solitons. Phys. Rev. A 106(5), 053514 (2022)
https://doi.org/10.1103/PhysRevA.106.053514
26 S. Kim,, K. Han,, C. Wang,, J.A. Jaramillo-Villegas,, X. Xue,, C. Bao,, Y. Xuan,, D.E. Leaird,, A.M. Weiner,, M. Qi,: Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun.Commun. 8(1), 372 (2017)
https://doi.org/10.1038/s41467-017-00491-x
27 J. Pan,, D. Xia,, Z. Wang,, B. Zhang,, Z. Li,: Chalcogenide chip-based frequency combs for advanced laser spectroscopy. J. Lightwave Technol. 41(13), 4065–4078 (2023)
https://doi.org/10.1109/JLT.2023.3276769
28 Z. Wang,, L. Luo,, D. Xia,, S. Lu,, G. Lin,, S. Gao,, Z. Li,, B. Zhang,: Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Front. Photon. 4, 1066993 (2023)
https://doi.org/10.3389/fphot.2023.1066993
29 G. Moille,, D. Westly,, N.G. Orji,, K. Srinivasan,: Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 119(12), 121103 (2021)
https://doi.org/10.1063/5.0061238
30 G. Moille,, X. Lu,, J. Stone,, D. Westly,, K. Srinivasan,: Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys.. Phys. 6(1), 144 (2023)
https://doi.org/10.1038/s42005-023-01253-6
31 M.H.P. Pfeiffer,, C. Herkommer,, J. Liu,, H. Guo,, M. Karpov,, E. Lucas,, M. Zervas,, T.J. Kippenberg,: Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4(7), 684–691 (2017)
https://doi.org/10.1364/OPTICA.4.000684
32 Y. Guo,, Z. Jafari,, L. Xu,, C. Bao,, P. Liao,, G. Li,, A.M. Agarwal,, L.C. Kimerling,, J. Michel,, A.E. Willner,, L. Zhang,: Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res. 7(11), 1279–1286 (2019)
https://doi.org/10.1364/PRJ.7.001279
33 H. Weng,, J. Liu,, A.A. Afridi,, J. Li,, J. Dai,, X. Ma,, Y. Zhang,, Q. Lu,, J.F. Donegan,, W. Guo,: Directly accessing octavespanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res. 9(7), 1351–1357 (2021)
https://doi.org/10.1364/PRJ.427567
34 J. Gu,, X. Li,, K. Qi,, K. Pu,, Z. Li,, F. Zhang,, T. Li,, Z. Xie,, M. Xiao,, X. Jiang,: Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett. 48(5), 1100–1103 (2023)
https://doi.org/10.1364/OL.479251
35 Y. Song,, Y. Hu,, X. Zhu,, K. Yang,, M. Loncar,: Octave-spanning Kerr soliton microcombs on thin-film lithium niobate. arXiv preprint arXiv: 2403.01107.(2024)
https://doi.org/10.1364/CLEO_SI.2024.SM1M.1
36 K. Luke,, Y. Okawachi,, M.R. Lamont,, A.L. Gaeta,, M. Lipson,: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40(21), 4823–4826 (2015)
https://doi.org/10.1364/OL.40.004823
37 G. Moille,, D. Westly,, K. Srinivasan,: Broadband visible wavelength microcomb generation in silicon nitride microrings through air-clad dispersion engineering. arXiv preprint arXiv: 2404.01577 (2024)
38 S. Coen,, H.G. Randle,, T. Sylvestre,, M. Erkintalo,: Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)
https://doi.org/10.1364/OL.38.000037
39 M.H. Anderson,, W. Weng,, G. Lihachev,, A. Tikan,, J. Liu,, T.J. Kippenberg,: Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. Commun. 13(1), 4764 (2022)
https://doi.org/10.1038/s41467-022-31916-x
40 M. Yu,, Y. Okawachi,, A.G. Griffith,, M. Lipson,, A.L. Gaeta,: Modelocked mid-infrared frequency combs in a silicon microresonator. Optica 3(8), 854–860 (2016)
https://doi.org/10.1364/OPTICA.3.000854
41 W. Wang,, X. Ming,, L. Shi,, K. Ma,, D. Ren,, Q. Sun,, L. Wang,, W. Zhang,: Broadband mid-infrared frequency comb generation in a large-cross-section silicon microresonator. IEEE Photonics J. 15(3), 1–6 (2023)
https://doi.org/10.1109/JPHOT.2023.3278930
42 L. Zhang,, C. Bao,, V. Singh,, J. Mu,, C. Yang,, A.M. Agarwal,, L.C. Kimerling,, J. Michel,: Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett. 38(23), 5122–5125 (2013)
https://doi.org/10.1364/OL.38.005122
43 I. Coddington,, W.C. Swann,, N.R. Newbury,: Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100(1), 013902 (2008)
https://doi.org/10.1103/PhysRevLett.100.013902
44 B. Bernhardt,, A. Ozawa,, P. Jacquet,, M. Jacquey,, Y. Kobayashi,, T. Udem,, R. Holzwarth,, G. Guelachvili,, T.W. Hänsch,, N. Picqué,: Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4(1), 55–57 (2010)
https://doi.org/10.1038/nphoton.2009.217
45 G. Ycas,, F.R. Giorgetta,, E. Baumann,, I. Coddington,, D. Herman,, S.A. Diddams,, N.R. Newbury,: High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics 12(4), 202–208 (2018)
https://doi.org/10.1038/s41566-018-0114-7
[1] Lu Zhang, Shijie Fu, Quan Sheng, Xuewen Luo, Junxiang Zhang, Wei Shi, Jianquan Yao. Pump quantum efficiency optimization of 3.5 µm Er-doped ZBLAN fiber laser for high-power operation[J]. Front. Optoelectron., 2023, 16(4): 33-.
[2] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed