Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (4) : 33    https://doi.org/10.1007/s12200-023-00089-w
RESEARCH ARTICLE
Pump quantum efficiency optimization of 3.5 µm Er-doped ZBLAN fiber laser for high-power operation
Lu Zhang1,2, Shijie Fu1,2(), Quan Sheng1,2(), Xuewen Luo1,2, Junxiang Zhang1,2, Wei Shi1,2(), Jianquan Yao1,2
1. Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2. Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
 Download: PDF(1512 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

976 nm + 1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5 µm lasing. However, the 2 µm band excited state absorption from the upper lasing level (4F9/24F7/2) depletes the Er ions population inversion, reducing the pump quantum efficiency and limiting the power scaling. In this work, we demonstrate that the pump quantum efficiency can be effectively improved by using a long-wavelength pump with lower excited state absorption rate. A 3.5 µm Er-doped ZBLAN fiber laser was built and its performances at different pump wavelengths were experimentally investigated in detail. A maximum output power at 3.46 µm of ∼ 7.2 W with slope efficiency (with respect to absorbed 1990 nm pump power) of 41.2% was obtained with an optimized pump wavelength of 1990 nm, and the pump quantum efficiency was increased to 0.957 compared with the 0.819 for the conventional 1976 nm pumping scheme. Further power scaling was only limited by the available 1990 nm pump power. A numerical simulation was implemented to evaluate the cross section of excited state absorption via a theoretical fitting of experimental results. The potential of further power scaling was also discussed, based on the developed model.

Keywords Fiber laser      Mid-infrared      Er-doped ZBLAN fiber      Dual-wavelength pumping     
Corresponding Author(s): Shijie Fu,Quan Sheng,Wei Shi   
Issue Date: 24 November 2023
 Cite this article:   
Lu Zhang,Shijie Fu,Quan Sheng, et al. Pump quantum efficiency optimization of 3.5 µm Er-doped ZBLAN fiber laser for high-power operation[J]. Front. Optoelectron., 2023, 16(4): 33.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00089-w
https://academic.hep.com.cn/foe/EN/Y2023/V16/I4/33
1 M. Ebrahim-Zadeh,, I.T. Sorokina,: Mid-Infrared Coherent Sources and Applications. Springer, Dordrecht (2008)
https://doi.org/10.1007/978-1-4020-6463-0
2 M.R. Majewski,, G. Bharathan,, A. Fuerbach,, S.D. Jackson,: Long wavelength operation of a dysprosium fiber laser for polymer processing. Opt. Lett. 46(3), 600–603 (2021)
https://doi.org/10.1364/OL.417208
3 V. Fortin,, J.P. Bérubé,, A. Fraser,, R. Vallée,: Resonant polymer ablation using a compact 3.44 µm fiber laser. J. Mater. Process. Technol. 252, 813–820 (2018)
https://doi.org/10.1016/j.jmatprotec.2017.10.051
4 H. Többen,: CW Lasing at 3.45 µm in erbium-doped fluorozirconate fibres. Frequenz 45(10), 250–252 (1991)
https://doi.org/10.1515/FREQ.1991.45.9-10.250
5 H. Többen,: Room temperature cw fiber laser at 3.5 µm in Er3+- doped ZBLAN glass. Electron. Lett. 28(14), 2–3 (1992)
https://doi.org/10.1049/el:19920865
6 O. Henderson-Sapir,, J. Munch,, D.J. Ottaway,: Mid-infrared fiber lasers at and beyond 3.5 µm using dual-wavelength pumping. Opt. Lett. 39(3), 493–496 (2014)
https://doi.org/10.1364/OL.39.000493
7 Z. Qin,, T. Hai,, G. Xie,, J. Ma,, P. Yuan,, L. Qian,, L. Li,, L. Zhao,, D. Shen,: Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength. Opt. Express 26(7), 8224–8231 (2018)
https://doi.org/10.1364/OE.26.008224
8 V. Fortin,, F. Maes,, M. Bernier,, S.T. Bah,, M. D’Auteuil,, R. Vallée,: Watt-level erbium-doped all-fiber laser at 3.44 µm. Opt. Lett. 41(3), 559–562 (2016)
https://doi.org/10.1364/OL.41.000559
9 F. Maes,, V. Fortin,, M. Bernier,, R. Vallée,: 5.6 W monolithic fiber laser at 3.55 µm. Opt. Lett. 42(11), 2054–2057 (2017)
https://doi.org/10.1364/OL.42.002054
10 H. Luo,, J. Yang,, F. Liu,, Z. Hu,, Y. Xu,, F. Yan,, H. Peng,, F. Ouellette,, J. Li,, Y. Liu,: Watt-level gain-switched fiber laser at 3.46 µm. Opt. Express 27(2), 1367–1375 (2019)
https://doi.org/10.1364/OE.27.001367
11 M. Lemieux-Tanguay,, V. Fortin,, T. Boilard,, P. Paradis,, F. Maes,, L. Talbot,, R. Vallée,, M. Bernier,: 15 W Monolithic fiber laser at 3.55 µm. Opt. Lett. 47(2), 289–292 (2021)
https://doi.org/10.1364/OL.446769
12 O. Henderson-Sapir,, A. Malouf,, N. Bawden,, J. Munch,, S.D. Jackson,, D.J. Ottaway,: Recent advances in 3.5 µm Erbium doped mid-infrared fiber lasers. IEEE J. Sel. Top. Quantum Electron. 23(3), 0900509 (2017)
https://doi.org/10.1109/JSTQE.2016.2615961
13 Z. Qin,, G. Xie,, J. Ma,, P. Yuan,, L. Qian,: Mid-infrared Er: ZBLAN fiber laser reaching 3.68 µm wavelength. Chin. Opt. Lett. 15(11), 111402 (2017)
https://doi.org/10.3788/COL201715.111402
14 F. Maes,, V. Fortin,, M. Bernier,, R. Vallee,: Quenching of 3.4 µm dual-wavelength pumped erbium doped fiber lasers. IEEE J. Quantum Electron. 53(2), 1–8 (2017)
https://doi.org/10.1109/JQE.2017.2677383
15 J. Wang,, D. Yeom,, N. Simakov,, A. Hemming,, A. Carter,, S. Lee,, K. Lee,: Numerical modeling of in-band pumped Ho-doped silica fiber lasers. J. Lightwave Technol. 36(24), 5863–5880 (2018)
https://doi.org/10.1109/JLT.2018.2877817
16 D. Marcuse,: Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56(5), 703–718 (1977)
https://doi.org/10.1002/j.1538-7305.1977.tb00534.x
17 S. Sujecki,: An efficient algorithm for steady state analysis of fibre lasers operating under cascade pumping scheme. Int. J. Electron. Telecommun. 60(2), 143–149 (2014)
https://doi.org/10.2478/eletel-2014-0017
[1] Tao Wang, Bo Ren, Can Li, Kun Guo, Jinyong Leng, Pu Zhou. Monolithic tapered Yb-doped fiber chirped pulse amplifier delivering 126 μJ and 207 MW femtosecond laser with near diffraction-limited beam quality[J]. Front. Optoelectron., 2023, 16(3): 30-.
[2] Yuting Ouyang, Jiayu Zhang, Wanggen Sun, Mengxiao Li, Tao Chen, Haikun Zhang, Wenjing Tang, Wei Xia. Picosecond dissipative soliton generation from an ytterbium-doped fiber laser based on a BP/SnSe2-PVA mixture saturable absorber[J]. Front. Optoelectron., 2023, 16(3): 19-.
[3] Baohao Xu, Zhiyuan Jin, Lie Shi, Huanian Zhang, Qi Liu, Peng Qin, Kai Jiang, Jing Wang, Wenjing Tang, Wei Xia. Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets[J]. Front. Optoelectron., 2023, 16(2): 13-.
[4] Zixiong Li, Mingyu Li, Xinyi Hou, Lei Du, Lin Xiao, Tianshu Wang, Wanzhuo Ma. Generation of mode-locked states of conventional solitons and bright-dark solitons in graphene mode-locked fiber laser[J]. Front. Optoelectron., 2023, 16(2): 12-.
[5] Rawan S. M. Soboh, Ahmed H. H. Al-Masoodi, Fuad N. A. Erman, Abtisam H. H. Al-Masoodi, Bilal Nizamani, Hamzah Arof, Retna Apsari, Sulaiman Wadi Harun. Mode-locked ytterbium-doped fiber laser with zinc phthalocyanine thin film saturable absorber[J]. Front. Optoelectron., 2022, 15(2): 28-.
[6] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[7] Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
[8] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[9] Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Front Optoelec, 2013, 6(2): 180-184.
[10] Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser[J]. Front Optoelec, 2012, 5(2): 208-213.
[11] Jiaqi ZHAO, Zhi WANG, Yange LIU, Bo LIU, . Switchable-multi-wavelength fiber laser based on dual-core all-solid photonic bandgap fiber[J]. Front. Optoelectron., 2010, 3(3): 283-288.
[12] Xi CHEN, Wei LI, Chao YANG, Ning YANG. High-power fiber laser combination technology[J]. Front Optoelec Chin, 2009, 2(3): 264-268.
[13] Shuang LIU, Junqiang SUN, Ping SHUM. Stable and high-performance multiwavelength erbium-doped fiber laser based on fiber delay interferometer[J]. Front Optoelec Chin, 2009, 2(2): 195-199.
[14] Bo WU, Yongzhi LIU, Qianshu ZHANG, Huimin YUE, Zhiyong DAI. High efficient and narrow linewidth fiber laser based on fiber grating Fabry-Perot cavity[J]. Front Optoelec Chin, 2008, 1(3-4): 215-218.
[15] LI Libo, LOU Qihong, ZHOU Jun, DONG Jingxing, WEI Yunrong, LI Jinyan. Influence of bending diameter on output capability of multimode fiber laser[J]. Front. Optoelectron., 2008, 1(1-2): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed