Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (3) : 264-268    https://doi.org/10.1007/s12200-009-0035-7
RESEARCH ARTICLE
High-power fiber laser combination technology
Xi CHEN, Wei LI, Chao YANG(), Ning YANG
China South Industries Academy, Beijing 100089, China
 Download: PDF(191 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Research on fiber laser combination is discussed briefly in this paper. High-power double clad-fiber laser beam combination technology is introduced and different kinds of fiber laser beam combination and coherent combination technologies are evaluated. Tapered fused bundle (TFB) couplers are used in laser combine for higher power. In this paper, the theory and progress in TFB coupling are introduced. The experiment on our self-fabricated TFB is presented. The efficiency of the fiber coupler exceeded 70% and increased as the input power went up. A maximum total output power of 689 W was obtained, with an efficiency of 74%. The fiber coupler displayed stability during the course of the experiment, without any cooling provided.

Keywords fiber laser      combination technology      fiber coupler      tapered fused bundle (TFB)      fabrication     
Corresponding Author(s): YANG Chao,Email:cy840221@163.com   
Issue Date: 05 September 2009
 Cite this article:   
Xi CHEN,Wei LI,Chao YANG, et al. High-power fiber laser combination technology[J]. Front Optoelec Chin, 2009, 2(3): 264-268.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0035-7
https://academic.hep.com.cn/foe/EN/Y2009/V2/I3/264
Fig.1  Master oscillator power amplifier
Fig.2  Schematic illustration of spectral beam combining using volume Bragg grating
Fig.3  Configuration of taper apparatus
Fig.4  (a) Cross section of fiber bundle; (b) cross section of tapered section, diameter is measured as 540 μm
Fig.5  Five fiber lasers beam combination
fiber laser 1 output/Wfiber laser 2 output/Wfiber laser 3 output/Wfiber laser 4 output/Wfiber laser 5 output/Wtotal output/Woutput after beam combination/Wefficiency /%
4.44.64.37.03.323.516.771.12
7.27.07.311.04.737.827.071.34
12.414.116.822.113.679.256.771.56
24.726.030.237.818.3136.998.271.72
34.036.440.050.123.4183.6132.171.89
68.969.577.867.732.6336.6243.472.32
77.577.985.798.336.0375.3273.172.76
86.388.494.8107.936.6414.3302.072.89
93.493.6103.9116.244.1453.4331.073.01
103.9102.1115.0130.349.8501.0368.073.45
108.0108.4121.2138.751.7528.0389.073.57
114.2113.9128.0148.154.8558.9412.073.72
121.6123.9142.6164.964.0617.1456.073.89
134.1125.1151.2178.171.3659.7489.074.12
Tab.1  Efficiency of 5 fiber lasers beam combination
Fig.6  Combining efficiency
1 Fan T Y, Sanchez A. Coherent (phased array) and wavelength (spectral) beam combining compared. Proceedings of SPIE , 2005, 5709: 157-164
doi: 10.1117/12.596455
2 Loftus T H, Liu A, Hoffman P R, Thomas A, Norsen M, Hamilton C E, Honea E. 258 W of spectrally beam combined power with near-diffraction limited beam quality. Proceedings of SPIE , 2006, 6102: 61020S
doi: 10.1117/12.648097
3 Sevian A, Andrusyak O, Ciapurin I, Venus G, Glebov L. Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes. Proceedings of SPIE , 2006, 6216: 62160V
doi: 10.1117/12.666024
4 Ciapurin I V, Glebov L B, Glebova L N, Smirnov V I, Rotari E V. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating. Proceedings of SPIE , 2003, 4974: 209-219
doi: 10.1117/12.501670
5 Boullet J, Sabourdy D, Desfarges-Berthelemot A, Kermène V, Pagnoux D, Roy P, Dussardier B, Blanc W. Coherent combining in an Yb-doped double-core fiber laser. Optics Letters , 2005, 30(15): 1962-1964
doi: 10.1364/OL.30.001962
6 Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers. Optics Letters , 1999, 24(24): 1814-1816
doi: 10.1364/OL.24.001814
7 Shirakawa A, Sekiguchi T, Ueda K. Scalable coherent beam combining of fiber lasers. In: Proceedings of Conference on Lasers and Electro-Optics . 2003, CWO1
8 He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L B, Zhang F P. High power coherent beam combination from two fiber lasers. Optics Express , 2006, 14(7): 2721-2726
doi: 10.1364/OE.14.002721
9 Shirakawa A, Saitou T, Sekiguchi T, Ueda K. Coherent addition of fiber lasers by use of a fiber coupler. Optics Express , 2002, 10(21): 1167-1172
10 Zhou Y, Liu L P, Etson C, Abranyos Y, Padilla A, Chen Y C. Phase locking of a two-dimensional laser array by controlling the far-field pattern. Applied Physics Letters , 2004, 84(16): 3025-3027
doi: 10.1063/1.1699448
11 Bruesselbach H, Minden M, Rogers J L, Jones D C, Mangir M S. 200 W self-organized coherent fiber arrays. In: Proceedings of Conference on Lasers and Electro-Optics . 2005, 1: 532-534
12 Wetter A, Faucher M, Lovelady M, Séguin F. Tapered fused-bundle splitter capable of 1 kW CW operation. Proceedings of SPIE , 2007, 6453: 64530I
doi: 10.1117/12.700466
13 Séguin F, Wetter A, Martineau L, Faucher M, Delisle C, Caplette S. Tapered fused bundle coupler package for reliable high optical power dissipation. Proceedings of SPIE , 2006, 6102: 61021N
doi: 10.1117/12.661254
14 Goloborodko V, Keren S, Rosenthal A, Levit B, Horowitz M. Measuring temperature profiles in high power optical fiber components. Applied Optics , 2003, 42(13): 2284-2288
doi: 10.1364/AO.42.002284
15 Evgeny M D, Igor A B, Artem A F. Destruction of silica fiber cladding by fiber fuse effect. In: Proceedings of Optical Fiber Communication Conference . 2004, TuB4
16 Martan T, Honzátko P, Kaňka J, Noyotny K. Workplace for manufacturing devices based on optical fiber tapers. Proceedings of SPIE , 2007, 6609: 66090K
doi: 10.1117/12.739499
17 Cronin A, McAtamney C, Sherlock R, O'Connor G M, Glynn T J. Laser-based workstation for the manufacture of fused biconical tapered coupler devices. Proceedings of SPIE , 2005, 5827: 505-514
doi: 10.1117/12.605004
18 Bayle F, Meunier J P. Efficient fabrication of fused-fiber biconical taper structures by a scanned CO2 laser beam technique. Applied Optics , 2005, 44(30): 6402-6411
doi: 10.1364/AO.44.006402
19 Kakarantzas G, Dimmick T E, Birks T A, Le Roux R, Russell P St J. Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers. Optics Letters , 2001, 26(15): 1137-1139
doi: 10.1364/OL.26.001137
[1] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[2] Oliver SALE, Safaa HASSAN, Noah HURLEY, Khadijah ALNASSER, Usha PHILIPOSE, Hualiang ZHANG, Yuankun LIN. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics[J]. Front. Optoelectron., 2020, 13(1): 12-17.
[3] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[4] Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
[5] Zhicheng LIU,Hao SUN,Leijun YIN,Yongzhuo LI,Jianxing ZHANG,Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Front. Optoelectron., 2016, 9(2): 312-317.
[6] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[7] Shui ZHAO, Ping LU, Li CHEN, Deming LIU, Jiangshan ZHANG. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Front Optoelec, 2013, 6(2): 180-184.
[8] Xiaoyan SUN, Peng HUANG, Jiefeng ZHAO, Li WEI, Nan ZHANG, Dengfeng KUANG, Xiaonong ZHU. Characteristic control of long period fiber grating (LPFG) fabricated by infrared femtosecond laser[J]. Front Optoelec, 2012, 5(3): 334-340.
[9] Jian LI, Aiying YANG, Lin ZUO, Junsen LAI, Yunan SUN. Optical sampling system using periodically-poled lithium niobate waveguide and nonlinear polarization rotation mode-locked fiber laser[J]. Front Optoelec, 2012, 5(2): 208-213.
[10] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[11] Ping ZHAO, Zhao WU, Kaisheng CHEN, Xinliang ZHANG. Hybrid fabricating of silica micro/nanofibers[J]. Front Optoelec Chin, 2011, 4(3): 338-342.
[12] Jiaqi ZHAO, Zhi WANG, Yange LIU, Bo LIU, . Switchable-multi-wavelength fiber laser based on dual-core all-solid photonic bandgap fiber[J]. Front. Optoelectron., 2010, 3(3): 283-288.
[13] Yao CHEN, Junbo FENG, Zhiping ZHOU, Christopher J. SUMMERS, David S. CITRIN, Jun YU. Simple technique to fabricate microscale and nanoscale silicon waveguide devices[J]. Front Optoelec Chin, 2009, 2(3): 308-311.
[14] Shuang LIU, Junqiang SUN, Ping SHUM. Stable and high-performance multiwavelength erbium-doped fiber laser based on fiber delay interferometer[J]. Front Optoelec Chin, 2009, 2(2): 195-199.
[15] Shuqin LOU, Shujie LOU, Tieying GUO, Liwen WANG, Weiguo CHEN, Honglei LI, Shuisheng JIAN. Photonic crystal fiber with novel dispersion properties[J]. Front Optoelec Chin, 2009, 2(2): 170-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed