Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 57-63    https://doi.org/10.1007/s11706-010-0013-4
Research articles
Surface properties and cytocompatibillity of silk fibroin films cast from aqueous solutions in different concentrations
Xiao-Jie LIAN1,Song WANG2,He-Sun ZHU3,
1.School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 2.School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;Research Center of Material Science, Beijing Institute of Technology, Beijing 100081, China; 3.Research Center of Material Science, Beijing Institute of Technology, Beijing 100081, China;
 Download: PDF(589 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Silk fibroin film (SFF) has been widely used in biomaterials. SFF is usually prepared from a regenerated silk aqueous solution and its properties depend remarkably on the preparation conditions. However, the effect of the silk fibroin concentration (C0) on the SFF surface properties as well as the cytocompatibility has rarely been investigated. In this work we prepared a series of Bombyx mori SFFs by casting SF aqueous solutions with the concentration from 100 to 102mg/mL on TCPS substrate at 60°C. The test results of atomic force microscopy, attenuated total reflection Fourier transform infrared and contact angles analysis showed that the film surface roughness and β-sheet structure increased with the increase of C0, whereas the surface hydrophilicity increased with the decrease of C0. The in vitro clotting time measurement results revealed that the SFFs prepared from the thinner solution showed a longer APTT (activated partial thromboplastin time) and TT (thrombin time). The results of microscopy and MTT assay also revealed that cell adhesion and growth were enhanced on the SFF cast from lower C0 for fibroblasts. In contrast, endothelial cells showed a similar behavior on all those films that were prepared from the solution in different concentrations.
Keywords silk fibroin films (SFFs)      solution concentrations      surface property      clotting time      cytocompatibility      
Issue Date: 05 March 2010
 Cite this article:   
Xiao-Jie LIAN,He-Sun ZHU,Song WANG. Surface properties and cytocompatibillity of silk fibroin films cast from aqueous solutions in different concentrations[J]. Front. Mater. Sci., 2010, 4(1): 57-63.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0013-4
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/57
Vepari C, Kaplan D L. Silk as a biomaterial. Progress in Polymer Science, 2007, 32(8―9): 991―1007

doi: 10.1016/j.progpolymsci.2007.05.013
Chen J Y, Minoura N, Tanioka A. Transport of pharmaceuticals through silk fibroin membrane. Polymer, 1994, 35(13): 2853―2856

doi: 10.1016/0032-3861(94)90317-4
Demura M, Asakura T, Nakamura E, et al. Immobilization of peroxidase with a Bombyx mori silk fibroin membrane and itsapplication to biophotosensors. Journalof Biotechnology, 1989, 10(2): 113–119

doi: 10.1016/0168-1656(89)90033-3
Zhang Y Q. Natural silk fibroin as a support for enzyme immobilization. Biotechnology Advances, 1998, 16(5―6): 961―971

doi: 10.1016/S0734-9750(98)00012-3
Ma X L, Cao C B, Li J H, et al. Novel prosthesis using silk fibroin for smallcaliber vascular. Key Engineering Materials, 2005, 288―289: 461―464

doi: 10.4028/www.scientific.net/KEM.288-289.461
Gu J W, Yang X L, Zhu H S. Surface sulfonation of silk fibroin film by plasma treatmentand in vitro antithrombogenicitystudy. Materials Science and Engineering:C, 2002, 20(1―2): 199―202

doi: 10.1016/S0928-4931(02)00033-4
Wang X Y, Kim H J, Xu P, et al. Biomaterial coatings by stepwise depositionof silk fibroin. Langmuir, 2005, 21(24): 11335―11341

doi: 10.1021/la051862m
Chiarini A, Petrini P, Bozzini S, et al. Silk fibroin/poly(carbonate)-urethane as a substratefor cell growth: in vitro interactionswith humancells. Biomaterials, 2003, 24(5): 789―799

doi: 10.1016/S0142-9612(02)00417-9
Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membraneas a biomaterial. Biomaterials, 1990, 11(6): 430―434

doi: 10.1016/0142-9612(90)90100-5
Freddi G, Romano M, Massafra M R, et al. Silk fibroin/cellulose blend films: Preparation,structure, and physical properties. Journalof Applied Polymer Science, 1995, 56(12): 1537―1545

doi: 10.1002/app.1995.070561203
Chen X, Li W J, Zhong W, et al. Studies on chitosan-fibroin blend membranes(I) ― Structure of the blend membraneand the improvement of the water adsorption and the mechanical propertyof fibroin. Chemical Journal of ChineseUniversities, 1998, 19(2): 300―304 (in Chinese)
Lv Q, Cao C B, Zhu H S. Clotting times and tensile properties of insoluble silkfibroin films containing heparin. PolymerInternational, 2005, 54(7): 1076―1081

doi: 10.1002/pi.1814
Jin H J, Park J, Karageorgiou V, et al. Water-stable silk films with reduced β-sheetcontent. Advanced Functional Materials, 2005, 15(8): 1241―1247

doi: 10.1002/adfm.200400405
Muller W S, Samuelson L A, Fossey S A, et al. Formation and characterization of Langmuir silkfilms. Langmuir, 1993, 9(7): 1857―1861

doi: 10.1021/la00031a038
Kweon H Y, Um I C, Park Y H. Thermal behavior of regenerated Antheraea pernyi silkfibroin film treated with aqueous methanol. Polymer, 2000, 41(20): 7361―7367

doi: 10.1016/S0032-3861(00)00100-2
Lv Q, Cao C B, Zhang Y, et al. Preparation of insoluble fibroin films withoutmethanol treatment. Journal of AppliedPolymer Science, 2005, 96(6): 2168―2173

doi: 10.1002/app.21682
Black J. BiologicalPerformance of Materials: Fundamentals of Biocompatibility. New York: Marcel Dekker, 1992
Kunzler T P, Drobek T, Schuler M, et al. Systematic study of osteoblast and fibroblastresponse to roughness by means of surface-morphology gradients. Biomaterials, 2007, 28(13): 2175―2182

doi: 10.1016/j.biomaterials.2007.01.019
Könönen M, Hormia M, Kivilahti J, et al. Effect of surface processing on attachment,orientation, and proliferation of human gingival fibroblasts on titanium. Journal of Biomedical Materials Research, 1992, 26(10): 1325―1341

doi: 10.1002/jbm.820261006
Cochran D L, Simpson J, Weber H P, et al. Attachment and growth of periodontal cells onsmooth and rough titanium. The InternationalJournal of Oral & Maxillofacial Implants, 1994, 9(3): 289―297
Ponsonnet L, Comte V, Othmane A, et al. Effect of surface topography and chemistry onadhesion, orientation and growth of fibroblasts on nickel-titaniumsubstrates. Materials Science and Engineering:C, 2002, 21(1―2): 157―165

doi: 10.1016/S0928-4931(02)00097-8
Wirth C, Comte V, Lagneau C, et al. Nitinol surface roughness modulates in vitro cell response: a comparison betweenfibroblasts and osteoblasts. MaterialsScience and Engineering: C, 2005, 25(1): 51–60

doi: 10.1016/j.msec.2004.06.001
Chung T W, Liu D Z, Wang S Y, et al. Enhancement of the growth of human endothelialcells by surface roughness at nanometer scale. Biomaterials, 2003, 24(25): 4655―4661

doi: 10.1016/S0142-9612(03)00361-2
[1] Qin LONG,Da-Li ZHOU,Xiang ZHANG,Jia-Bei ZHOU. Surface modification of apatite--wollastonite glass ceramic by synthetic coupling agent[J]. Front. Mater. Sci., 2014, 8(2): 157-164.
[2] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[3] Zhen-ding SHE, Wei-qiang LIU, Qing-ling FENG. Preparation and cytocompatibility of silk fibroin / chitosan scaffolds[J]. Front Mater Sci Chin, 2009, 3(3): 241-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed