Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (3) : 247-265    https://doi.org/10.1007/s11706-011-0141-5
REVIEW ARTICLE
Bio-inspired supramolecular self-assembly towards soft nanomaterials
Yiyang LIN, Chuanbin MAO()
Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
 Download: PDF(1485 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on.

Keywords supramolecular self-assembly      soft material      peptide      nucleic acid      virus     
Corresponding Author(s): MAO Chuanbin,Email:cbmao@ou.edu   
Issue Date: 05 September 2011
 Cite this article:   
Yiyang LIN,Chuanbin MAO. Bio-inspired supramolecular self-assembly towards soft nanomaterials[J]. Front Mater Sci, 2011, 5(3): 247-265.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0141-5
https://academic.hep.com.cn/foms/EN/Y2011/V5/I3/247
1 Lehn J M.Supramolecular chemistry scope and perspectives — Molecules supermolecules molecular devices.Chemica Scripta, 1988, 28(3): 237–262
2 Lehn J M.Supramolecular chemistry: from molecular information towards self-organization and complex matter.Reports on Progress in Physics, 2004, 67(3): 249–265
doi: 10.1088/0034-4885/67/3/R02
3 Lehn J M.Toward self-organization and complex matter.Science, 2002, 295(5564): 2400–2403
doi: 10.1126/science.1071063
4 Granja J R, Ghadiri M R. Self-assembling peptide nanotubes. NMR in Supramolecular Chemistry, 1999, 526: 61–66
5 Lawrence D S, Jiang T, Levett M.Self-assembling supramolecular complexes.Chemical Reviews, 1995, 95(6): 2229–2260
doi: 10.1021/cr00038a018
6 Lehn J M. Perspectives in supramolecular chemistry — From molecular recognition towards molecular information-processing and self-organization.Angewandte Chemie International Edition in English, 1990, 29(11): 1304–1319
doi: 10.1002/anie.199013041
7 Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding.Angewandte Chemie International Edition, 2001, 40(13): 2382–2426
doi: 10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G
8 Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry — A chemical strategy for the synthesis of nanostructures.Science, 1991, 254(5036): 1312–1319
doi: 10.1126/science.1962191
9 Whitesides G M, Simanek E E, Mathias J P, . Noncovalent synthesis — Using physical-organic chemistry to make aggregates.Accounts of Chemical Research, 1995, 28(1): 37–44
doi: 10.1021/ar00049a006
10 Rosemeyer H. Nucleolipids: natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials.Chemistry & Biodiversity, 2005, 2(8): 977–1062
doi: 10.1002/cbdv.200590082
11 Itojima Y, Ogawa Y, Tsuno K, . Spontaneous formation of helical structures from phospholipid-nucleoside conjugates.Biochemistry, 1992, 31(20): 4757–4765
doi: 10.1021/bi00135a003
12 Bombelli F B, Berti D, Milani S, . Collective headgroup conformational transition in twisted micellar superstructures.Soft Matter, 2008, 4(5): 1102–1113
doi: 10.1039/b800210j
13 Park S M, Lee Y S, Kim B H. Novel low-molecular-weight hydrogelators based on 2′-deoxyuridine. Chemical Communications, 2003, (23): 2912–2913
doi: 10.1039/b311249g
14 Campins N, Dieudonné P, Grinstaff M W, . Nanostructured assemblies from nucleotide-based amphiphiles.New Journal of Chemistry, 2007, 31(11): 1928–1934
doi: 10.1039/b704884j
15 Fenniri H, Packiarajan M, Vidale K L, . Helical rosette nanotubes: design, self-assembly, and characterization.Journal of the American Chemical Society, 2001, 123(16): 3854–3855
doi: 10.1021/ja005886l
16 Fenniri H, Deng B-L, Ribbe A E, . Entropically driven self-assembly of multichannel rosette nanotubes.Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(Suppl 2): 6487–6492
doi: 10.1073/pnas.032527099
17 Fenniri H, Deng B L, Ribbe A E.Helical rosette nanotubes with tunable chiroptical properties.Journal of the American Chemical Society, 2002, 124(37): 11064–11072
doi: 10.1021/ja026164s
18 Borzsonyi G, Johnson R S, Myles A J, . Rosette nanotubes with 1.4 nm inner diameter from a tricyclic variant of the Lehn-Mascal G∧C base.Chemical Communications, 2010, 46(35): 6527–6529
doi: 10.1039/c0cc01859g
19 Davis J T, Spada G P.Supramolecular architectures generated by self-assembly of guanosine derivatives.Chemical Society Reviews, 2007, 36(2): 296–313
doi: 10.1039/b600282j
20 Davis J T.G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angewandte Chemie International Edition, 2004, 43(6): 668–698
doi: 10.1002/anie.200300589
21 Fragata M, Menikh A, Robert S. Salt-mediated effects in nonionic lipid bilayers constituted of digalactosyldiacylglycerol studied by ftir spectroscopy and molecular modellization.The Journal of Physical Chemistry, 1993, 97(51): 13920–13926
doi: 10.1021/j100153a076
22 Zhang L, Rodriguez J, Raez J, . Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.Nanotechnology, 2009, 20(17): 175101 (12 pages)
23 Wagner F, Rottem S, Held H D, . Ether lipids in the cell membrane of Mycoplasma fermentans.European Journal of Biochemistry, 2000, 267(20): 6276–6286
doi: 10.1046/j.1432-1327.2000.01709.x
24 Brandenburg K, Richter W, Koch M H J, . Characterization of the nonlamellar cubic and HII structures of lipid A from Salmonella enterica serovar Minnesota by X-ray diffraction and freeze-fracture electron microscopy.Chemistry and Physics of Lipids, 1998, 91(1): 53–69
doi: 10.1016/S0009-3084(97)00093-5
25 Fuhrhop J H, Schnieder P, Rosenberg J, . The chiral bilayer effect stabilizes micellar fibers.Journal of the American Chemical Society, 1987, 109(11): 3387–3390
doi: 10.1021/ja00245a032
26 Fuhrhop J H, Schnieder P, Boekema E, . Lipid bilayer fibers from diastereomeric and enantiomeric N-octylaldonamides. Journal of the American Chemical Society, 1988, 110(9): 2861–2867
doi: 10.1021/ja00217a028
27 Fuhrhop J H, Svenson S, Boekema E, . Long-lived micellar N-alkylaldonamide fiber gels. Solid-state NMR and electron microscopic studies.Journal of the American Chemical Society, 1990, 112(11): 4301–4312
doi: 10.1021/ja00167a029
28 Fuhrhop J H, Boettcher C.Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures.Journal of the American Chemical Society, 1990, 112(5): 1768–1776
doi: 10.1021/ja00161a018
29 Fuhrhop J H, Blumtritt P, Lehmann C, . Supramolecular assemblies, a crystal structure, and a polymer of N-diacetylenic gluconamides.Journal of the American Chemical Society, 1991, 113(19): 7437–7439
doi: 10.1021/ja00019a060
30 Koning J, Boettcher C, Winkler H, . Magic angle (54.7-degrees) gradient and minimal-surfaces in quadruple micellar helices.Journal of the American Chemical Society, 1993, 115(2): 693–700
doi: 10.1021/ja00055a045
31 John G, Masuda M, Okada Y, . Nanotube formation from renewable resources via coiled nanofibers.Advanced Materials , 2001, 13(10): 715–718
doi: 10.1002/1521-4095(200105)13:10<715::AID-ADMA715>3.0.CO;2-Z
32 John G, Jung J H, Minamikawa H, . Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chemistry- A European Journal, 2002, 8(23): 5494–5500
doi: 10.1002/1521-3765(20021202)8:23<5494::AID-CHEM5494>3.0.CO;2-P
33 Jung J H, John G, Masuda M, . Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure.Langmuir, 2001, 17(23): 7229–7232
doi: 10.1021/la0109516
34 Jung J H, John G, Yoshida K, . Self-assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds.Journal of the American Chemical Society, 2002, 124(36): 10674–10675
doi: 10.1021/ja020752o
35 Shimizu T, Masuda M. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles.Journal of the American Chemical Society , 1997, 119(12): 2812–2818
doi: 10.1021/ja961226y
36 Nakazawa I, Masuda M, Okada Y, . Spontaneous formation of helically twisted fibers from 2-glucosamide bolaamphiphiles: Energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge.Langmuir, 1999, 15(14): 4757–4764
doi: 10.1021/la981714e
37 Bell P C, Bergsma M, Dolbnya I P, . Transfection mediated by gemini surfactants: Engineered escape from the endosomal compartment.Journal of the American Chemical Society, 2003, 125(6): 1551–1558
doi: 10.1021/ja020707g
38 Johnsson M, Wagenaar A, Engberts J. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH.Journal of the American Chemical Society, 2003, 125(3): 757–760
doi: 10.1021/ja028195t
39 Johnsson M, Wagenaar A, Stuart M C A, . Sugar-based gemini surfactants with pH-dependent aggregation behavior: Vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal.Langmuir, 2003, 19(11): 4609–4618
doi: 10.1021/la0343270
40 Johnsson M, Engberts J. Novel sugar-based gemini surfactants: aggregation properties on aqueous solution.Journal of Physical Organic Chemistry, 2004, 17(11): 934–944
doi: 10.1002/poc.817
41 Wasungu L, Scarzello M, van Dam G, . Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications.Journal of Molecular Medicine, 2006, 84(9): 774–784
doi: 10.1007/s00109-006-0067-z
42 Wasungu L, Stuart M C A, Scarzello M, . Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006, 1758(10): 1677–1684
doi: 10.1016/j.bbamem.2006.06.019
43 Blanzat M, Massip S, Speziale V, . First example of helices and tubules in aqueous solution of a new fluorescent catanionic sugar surfactant.Langmuir, 2001, 17(11): 3512–3514
doi: 10.1021/la001744t
44 Blanzat M, Perez E, Rico-Lattes I, . Correlation between structure, aggregation behaviour and cellular toxicity of anti-HIV catanionic analogues of galactosylceramide. Chemical Communications, 2003, (2): 244–245
doi: 10.1039/b210392n
45 Soussan E, Pasc-Banu A, Consola S, . New catanionic triblock amphiphiles: Supramolecular organization of a sugar-derived bolaamphiphile associated with dicarboxylates.Chemphyschem , 2005, 6(12): 2492–2494
doi: 10.1002/cphc.200500273
46 Soussan E, Mille C, Blanzat M, . Sugar-derived tricatenar catanionic surfactant: Synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles.Langmuir, 2008, 24(6): 2326–2330
doi: 10.1021/la702171s
47 Vivares D, Soussan E, Blanzat M, . Sugar-derived tricatenar catanionic surfactant: Self-assembly and aggregation behavior in the cationic-rich side of the system.Langmuir , 2008, 24(17): 9260–9267
doi: 10.1021/la8005635
48 Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides.Journal of the American Chemical Society, 1991, 113(19): 7436–7437
doi: 10.1021/ja00019a059
49 Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides.Journal of the American Chemical Society, 1994, 116(22): 10057–10069
doi: 10.1021/ja00101a026
50 Hafkamp R J H, Feiters M C, Nolte R J M. Organogels from carbohydrate amphiphiles.The Journal of Organic Chemistry, 1999, 64(2): 412–426
doi: 10.1021/jo981158t
51 Kim B S, Hong D J, Bae J, . Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands.Journal of the American Chemical Society, 2005, 127(46): 16333–16337
doi: 10.1021/ja055999a
52 Ryu J H, Lee E, Lim Y B, . Carbohydrate-coated supramolecular structures: Transformation of nanofibers into spherical micelles triggered by guest encapsulation.Journal of the American Chemical Society, 2007, 129(15): 4808–4814
doi: 10.1021/ja070173p
53 Chen C-K, Lin S-C, Ho R-M, . Kinetically controlled self-assembled superstructures from semicrystalline chiral block copolymers.Macromolecules , 2010, 43(18): 7752–7758
doi: 10.1021/ma1009879
54 Lin T F, Ho R M, Sung C H, . Helical morphologies of thermotropic liquid-crystalline chiral Schiff-based rod-coil amphiphiles. Chemistry of Materials, 2006, 18(23): 5510–5519
doi: 10.1021/cm061666g
55 Sung C H, Kung L R, Hsu C S, . Induced twisting in the self-assembly of chiral Schiff-based rod-coil amphiphiles.Chemistry of Materials , 2006,18(2): 352–359
doi: 10.1021/cm051801+
56 Lin T F, Ho R M, Sung C H, . Variation of helical twisting power in self-assembled sugar-appended Schiff base chiral rod-coil amphiphiles.Chemistry of Materials , 2008, 20(4): 1404–1409
doi: 10.1021/cm702252b
57 Avalos M, Babiano R, Cintas P, . A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: Synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization.Chemistry- A European Journal, 2008, 14(18): 5656–5669
doi: 10.1002/chem.200701897
58 Jang D, Lee H-Y, Park M, . Nano- and microstructure fabrication by using a three-component system.Chemistry- A European Journal, 2010, 16(16): 4836–4842
59 Amanokura N, Yoza K, Shinmori H, . New sugar-based gelators bearing a p-nitrophenyl chromophore: remarkably large influence of a sugar structure on the gelation ability. Journal of the Chemical Society, Perkin Transactions 2 , 1998, (12): 2585–2591
doi: 10.1039/a807001f
60 Yoza K, Amanokura N, Ono Y, . Sugar-integrated gelators of organic solvents- Their remarkable diversity in gelation ability and aggregate structure.Chemistry- A European Journal, 1999, 5(9): 2722–2729
doi: 10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N
61 Gronwald O, Shinkai S. ‘Bifunctional’ sugar-integrated gelators for organic solvents and water — on the role of nitro-substituents in 1-O-methyl-4,6-O-(nitrobenzylidene)-monosaccharides for the improvement of gelation ability.Journal of the Chemical Society, Perkin Transactions 2 , 2001, (10): 1933–1937
62 Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents.Chemistry- A European Journal, 2001, 7(20): 4328–4334
doi: 10.1002/1521-3765(20011015)7:20<4328::AID-CHEM4328>3.0.CO;2-S
63 Sakurai K, Jeong Y, Koumoto K, . Supramolecular structure of a sugar-appended organogelator explored with synchrotron X-ray small-angle scattering. Langmuir , 2003, 19(20): 8211–8217
doi: 10.1021/la0346752
64 Kiyonaka S, Shinkai S, Hamachi H. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis.Chemistry- A European Journal, 2003, 9(4): 976–983
doi: 10.1002/chem.200390120
65 Hamley I W. Peptide fibrillization.Angewandte Chemie International Edition , 2007, 46(43): 8128–8147
doi: 10.1002/anie.200700861
66 Zhang S G. Fabrication of novel biomaterials through molecular self-assembly.Nature Biotechnology, 2003, 21(10): 1171–1178
doi: 10.1038/nbt874
67 K?nig H M, Kilbinger A F M. Learning from nature: β-sheet-mimicking copolymers get organized.Angewandte Chemie International Edition, 2007, 46(44): 8334–8340
68 Sarikaya M, Tamerler C, Jen A K Y, . Molecular biomimetics: nanotechnology through biology.Nature Materials, 2003, 2(9): 577–585
doi: 10.1038/nmat964
69 Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.Biomaterials, 2003, 24(24): 4385–4415
doi: 10.1016/S0142-9612(03)00343-0
70 Zhang S G, Holmes T, Lockshin C, . Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane.Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(8): 3334–3338
doi: 10.1073/pnas.90.8.3334
71 Holmes T C, de Lacalle S, Su X, . Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6728–6733
doi: 10.1073/pnas.97.12.6728
72 Vauthey S, Santoso S, Gong H Y, . Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles.Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5355–5360
doi: 10.1073/pnas.072089599
73 Santoso S, Hwang W, Hartman H, . Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles.Nano Letters, 2002, 2(7): 687–691
doi: 10.1021/nl025563i
74 Aggeli A, Bell M, Boden N, . Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes.Nature, 1997, 386(6622): 259–262
doi: 10.1038/386259a0
75 Aggeli A, Bell M, Boden N, . Engineering of peptide β-sheet nanotapes.Journal of Materials Chemistry, 1997, 7(7): 1135–1145
doi: 10.1039/a701088e
76 Aggeli A, Nyrkova I A, Bell M, . Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11857–11862
doi: 10.1073/pnas.191250198
77 Clark T D, Buriak J M, Kobayashi K, . Cylindrical β-sheet peptide assemblies.Journal of the American Chemical Society, 1998, 120(35): 8949–8962
doi: 10.1021/ja981485i
78 Hartgerink J D, Clark T D, Ghadiri M R. Peptide nanotubes and beyond.Chemistry- A European Journal, 1998, 4(8): 1367–1372
doi: 10.1002/(SICI)1521-3765(19980807)4:8<1367::AID-CHEM1367>3.0.CO;2-B
79 Deming T J. Polypeptide materials: New synthetic methods and applications. Advanced Materials, 1997, 9(4): 299–311
doi: 10.1002/adma.19970090404
80 Deming T J. Facile synthesis of block copolypeptides of defined architecture.Nature, 1997, 390(6658): 386–389
doi: 10.1038/37084
81 Gauba V, Hartgerink J D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions.Journal of the American Chemical Society, 2007, 129(9): 2683–2690
doi: 10.1021/ja0683640
82 Dong H, Paramonov S E, Aulisa L, . Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure.Journal of the American Chemical Society, 2007, 129(41): 12468–12472
doi: 10.1021/ja072536r
83 Gauba V, Hartgerink J D. Surprisingly high stability of collagen ABC heterotrimer: Evaluation of side chain charge pairs.Journal of the American Chemical Society, 2007, 129(48): 15034–15041
doi: 10.1021/ja075854z
84 Dong H, Paramonov S E, Hartgerink J D. Self-assembly of α-helical coiled coil nanofibers. Journal of the American Chemical Society, 2008, 130(41): 13691–13695
doi: 10.1021/ja8037323
85 Russell L E, Fallas J A, Hartgerink J D. Selective assembly of a high stability AAB collagen heterotrimer.Journal of the American Chemical Society, 2010, 132(10): 3242–3243
doi: 10.1021/ja909720g
86 Pomerantz W C, Yuwono V M, Pizzey C L, . Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides.Angewandte Chemie International Edition, 2008, 47(7): 1241–1244
doi: 10.1002/anie.200704372
87 Schneider J P, Pochan D J, Ozbas B, . Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.Journal of the American Chemical Society, 2002, 124(50): 15030–15037
doi: 10.1021/ja027993g
88 Salick D A, Kretsinger J K, Pochan D J, . Inherent antibacterial activity of a peptide-based β-hairpin hydrogel.Journal of the American Chemical Society , 2007, 129(47): 14793–14799
doi: 10.1021/ja076300z
89 Nagarkar R P, Hule R A, Pochan D J, . De novo design of strand-swapped β-hairpin hydrogels. Journal of the American Chemical Society , 2008, 130(13): 4466–4474
doi: 10.1021/ja710295t
90 Pochan D J, Schneider J P, Kretsinger J, . Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Journal of the American Chemical Society , 2003, 125(39): 11802–11803
doi: 10.1021/ja0353154
91 Zhao X B, Pan F, Lu J R. Recent development of peptide self-assembly. Progress in Natural Science , 2008, 18(6): 653–660
doi: 10.1016/j.pnsc.2008.01.012
92 Wang M, Hou W, Mi C C, . Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry , 2009, 81(21): 8783–8789
doi: 10.1021/ac901808q
93 Lim Y B, Lee E, Lee M. Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angewandte Chemie International Edition , 2007, 46(47): 9011–9014
doi: 10.1002/anie.200702732
94 Yoon Y R, Lim Y B, Lee E, . Self-assembly of a peptide rod-coil: a polyproline rod and a cell-penetrating peptide Tat coil. Chemical Communications , 2008, (16): 1892–1894
doi: 10.1039/b719868j
95 Yu Y C, Berndt P, Tirrell M, . Self-assembling amphiphiles for construction of protein molecular architecture. Journal of the American Chemical Society , 1996, 118(50): 12515–12520
doi: 10.1021/ja9627656
96 Deng M L, Yu D F, Hou Y B, . Self-assembly of peptide-amphiphile C12-Aβ(11-17) into nanofibrils. The Journal of Physical Chemistry B , 2009, 113(25): 8539–8544
doi: 10.1021/jp904289y
97 Zhao X B, Pan F, Xu H, . Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews , 2010, 39(9): 3480–3498
doi: 10.1039/b915923c
98 Berndt P, Fields G B, Tirrell M. Synthetic lipidation of peptides and amino-acids — Monolayer structure and properties. Journal of the American Chemical Society , 1995, 117(37): 9515–9522
doi: 10.1021/ja00142a019
99 Lee K C, Carlson P A, Goldstein A S, . Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: A kinetic and structural study. Langmuir , 1999, 15(17): 5500–5508
100 Ho-Wook J, Paramonov S E, Hartgerink J D. Biomimetic self-assembled nanofibers. Soft Matter , 2006, 2(3): 177–81
101 Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science , 2001, 294(5547): 1684–1688
doi: 10.1126/science.1063187
102 Hartgerink J D, Beniash E, Stupp S I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(8): 5133–5138
doi: 10.1073/pnas.072699999
103 Claussen R C, Rabatic B M, Stupp S I. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. Journal of the American Chemical Society , 2003, 125(42): 12680–12681
doi: 10.1021/ja035882r
104 Niece K L, Hartgerink J D, Donners J, . Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society , 2003, 125(24): 7146–7147
doi: 10.1021/ja028215r
105 Behanna H A, Donners J, Gordon A C, . Coassembly of amphiphiles with opposite peptide polarities into nanofibers. Journal of the American Chemical Society , 2005, 127(4): 1193–1200
doi: 10.1021/ja044863u
106 Tovar J D, Claussen R C, Stupp S I.Probing the interior of peptide amphiphile supramolecular aggregates.Journal of the American Chemical Society, 2005, 127(20): 7337–7345
doi: 10.1021/ja043764d
107 Cui H, Muraoka T, Cheetham A G, . Self-assembly of giant peptide nanobelts.Nano Letters, 2009, 9(3): 945–951
doi: 10.1021/nl802813f
108 Pashuck E T, Stupp S I.Direct observation of morphological tranformation from twisted ribbons into helical ribbons. Journal of the American Chemical Society, 2010, 132(26): 8819–8821
doi: 10.1021/ja100613w
109 L?wik D W P M, Linhardt J G, Adams P J H M, . Non-covalent stabilization of a β-hairpin peptide into liposomes. Organic & Biomolecular Chemistry, 2003, 1(11): 1827–1829
doi: 10.1039/b303749e
110 L?wik D W P M, van Hest J C M. Peptide based amphiphiles.Chemical Society Reviews, 2004, 33(4): 234–245
doi: 10.1039/b212638a
111 Meijer J T, Henckens M, Minten I J, . Disassembling peptide-based fibres by switching the hydrophobic-hydrophilic balance. Soft Matter , 2007, 3(9): 1135–1137
doi: 10.1039/b708847g
112 Paramonov S E, Jun H W, Hartgerink J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing.Journal of the American Chemical Society, 2006, 128(22): 7291–7298
doi: 10.1021/ja060573x
113 Kwon S, Jeon A, Yoo S H, . Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer. Angewandte Chemie International Edition, 2010, 122(44): 8408–8412
doi: 10.1002/ange.201003302
114 Seeman N C. Nucleic acid junctions and lattices.Journal of Theoretical Biology, 1982, 99(2): 237–247
doi: 10.1016/0022-5193(82)90002-9
115 Winfree E, Liu F R, Wenzler L A, . Design and self-assembly of two-dimensional DNA crystals.Nature , 1998, 394(6693): 539–544
doi: 10.1038/28998
116 Yan H, Park S H, Finkelstein G, . DNA-templated self-assembly of protein arrays and highly conductive nanowires.Science, 2003, 301(5641): 1882–1884
doi: 10.1126/science.1089389
117 Lin C, Liu Y, Yan H. Designer DNA nanoarchitectures.Biochemistry, 2009, 48(8): 1663–1674
doi: 10.1021/bi802324w
118 Seeman N C, Wang H, Qi J, . DNA nanotechnology and topology.Biological Structure and Dynamics, 1996, 2: 319–339
119 Seeman N C. The design and engineering of nucleic acid nanoscale assemblies.Current Opinion in Structural Biology, 1996, 6(4): 519–526
doi: 10.1016/S0959-440X(96)80118-7
120 Seeman N C. DNA nanotechnology: Novel DNA constructions.Annual Review of Biophysics and Biomolecular Structure, 1998, 27: 225–248
121 Seeman N C. DNA engineering and its application to nanotechnology. Trends in Biotechnology, 1999, 17(11): 437–443
doi: 10.1016/S0167-7799(99)01360-8
122 Seeman N C, Liu F, Wenzler L A, . Design and modification of two dimensional DNA arrays.Biophysical Journal, 1999, 76(1): A152–A152
123 Yin P, Hariadi R F, Sahu S, . Programming DNA tube circumferences.Science, 2008, 321(5890): 824–826
doi: 10.1126/science.1157312
124 LaBean T H.Nanotechnology: Another dimension for DNA art.Nature, 2009, 459(7245): 331–332
doi: 10.1038/459331a
125 Hansen M N, Zhang A M, Rangnekar A, . Weave tile architecture construction strategy for DNA nanotechnology.Journal of the American Chemical Society, 2010, 132(41): 14481–14486
doi: 10.1021/ja104456p
126 Yan H.Nucleic acid nanotechnology.Science, 2004, 306(5704): 2048–2049
doi: 10.1126/science.1106754
127 Park S H, Yin P, Liu Y, . Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Letters, 2005, 5(4): 729–733
doi: 10.1021/nl050175c
128 Liu Y, Ke Y G, Yan H. Self-assembly of symmetric finite-size DNA nanoarrays.Journal of the American Chemical Society, 2005, 127(49): 17140–17141
doi: 10.1021/ja055614o
129 Liu Y, Yan H. Designer curvature. Science , 2009, 325(5941): 685–686
doi: 10.1126/science.1178328
130 Wang X R, Holowka E, Deming T J, . Peptide-based inorganic nanocomposite via self-assembly of synthetic polypeptide.Abstracts of Papers of the American Chemical Society, 2008, 236: 435
131 Liu D, Wang M S, Deng Z X, . Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions.Journal of the American Chemical Society, 2004, 126(8): 2324–2325
doi: 10.1021/ja031754r
132 He Y, Ye T, Su M, . Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra.Nature , 2008, 452(7184): 198–201
doi: 10.1038/nature06597
133 Zhang C, Su M, He Y, . Conformational flexibility facilitates self-assembly of complex DNA nanostructures.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10665–10669
doi: 10.1073/pnas.0803841105
134 Zheng J P, Birktoft J J, Chen Y, . From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature , 2009, 461(7260): 74–77
doi: 10.1038/nature08274
135 Wang F, Mao C B. Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors.Chemical Communications, 2009, (10): 1222–1224
doi: 10.1039/b818652a
136 Aldaye F A, Lo P K, Karam P, . Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.Nature Nanotechnology, 2009, 4(6): 349–352
doi: 10.1038/nnano.2009.72
137 Nuraje N, Mohammed S, Yang L L, . Biomineralization nanolithography: combination of bottom-up and top-down fabrication to grow arrays of monodisperse gold nanoparticles along peptide lines. Angewandte Chemie International Edition, 2009, 48(14): 2546–2548
doi: 10.1002/anie.200805145
138 Holowka E P, Deming T J. Synthesis and cross linking of L-DOPA containing polypeptide vesicles.Macromolecular Bioscience, 10(5): 496–502
139 Lo P K, Altvater F, Sleiman H F. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.Journal of the American Chemical Society, 2010, 132(30): 10212–10214
doi: 10.1021/ja1017442
140 Mao C B, Liu A H, Cao B R. Virus-based chemical and biological sensing.Angewandte Chemie International Edition, 2009, 48(37): 6790–6810
doi: 10.1002/anie.200900231
141 Mao C B, Flynn C E, Hayhurst A, . Viral assembly of oriented quantum dot nanowires.Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951
doi: 10.1073/pnas.0832310100
142 Mao C B, Solis D J, Reiss B D, . Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires.Science , 2004, 303(5655): 213–217
doi: 10.1126/science.1092740
143 Balci S, Noda K, Bittner A M, . Self-assembly of metal-virus nanodumbbells.Angewandte Chemie International Edition, 2007, 46(17): 3149–3151
doi: 10.1002/anie.200604558
144 Vega R A, Maspoch D, Salaita K, . Nanoarrays of single virus particles.Angewandte Chemie International Edition, 2005, 44(37): 6013–6015
doi: 10.1002/anie.200501978
145 Carrera M R A, Kaufmann G F, Mee J M, . Treating cocaine addiction with viruses.Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(28): 10416–10421
doi: 10.1073/pnas.0403795101
146 Kovacs E W, Hooker J M, Romanini D W, . Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system.Bioconjugate Chemistry, 2007, 18(4): 1140–1147
doi: 10.1021/bc070006e
147 Souza G R, Christianson D R, Staquicini F I, . Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1215–1220
doi: 10.1073/pnas.0509739103
148 Goicochea N L, De M, Rotello V M, . Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates.Nano Letters , 2007, 7(8): 2281–2290
doi: 10.1021/nl070860e
149 Petrenko V A. Evolution of phage display: from bioactive peptides to bioselective nanomaterials.Expert Opinion on Drug Delivery, 2008, 5(8): 825–836
doi: 10.1517/17425247.5.8.825
150 Kostiainen M A, Kasyutich O, Cornelissen J, . Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes.Nature Chemistry, 2010, 2(5): 394–399
doi: 10.1038/nchem.592
151 Smith G P, Petrenko V A. Phage display. Chemical Reviews, 1997, 97(2): 391–410
doi: 10.1021/cr960065d
152 Liu A H, Abbineni G, Mao C B. Nanocomposite films assembled from genetically engineered filamentous viruses and gold nanoparticles: nanoarchitecture- and humidity-tunable surface plasmon resonance spectra.Advanced Materials , 2009, 21(9): 1001–1005
doi: 10.1002/adma.200800777
153 Ngweniform P, Abbineni G, Cao B R, . Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery.Small , 2009, 5(17): 1963–1969
doi: 10.1002/smll.200801902
154 Chen C L, Rosi N L. Peptide-based methods for the preparation of nanostructured inorganic materials.Angewandte Chemie International Edition, 2010, 49(11): 1924–1942
155 Djalali R, Chen Y, Matsui H. Au nanowire fabrication from sequenced histidine-rich peptide.Journal of the American Chemical Society, 2002, 124(46): 13660–13661
doi: 10.1021/ja028261r
156 Banerjee I A, Yu L T, Matsui H. Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation.Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(25): 14678–14682
doi: 10.1073/pnas.2433456100
157 Umetsu M, Mizuta M, Tsumoto K, . Bioassisted room-temperature immobilization and mineralization of zinc oxide — The structural ordering of ZnO nanoparticles into a flower-type morphology.Advanced Materials , 2005, 17(21): 2571–2575
doi: 10.1002/adma.200500863
158 Jung J H, Ono Y, Hanabusa K, . Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives.Journal of the American Chemical Society, 2000, 122(20): 5008–5009
doi: 10.1021/ja000449s
159 Sone E D, Zubarev E R, Stupp S I. Semiconductor nanohelices templated by supramolecular ribbons. Angewandte Chemie International Edition, 2002, 41(10): 1705–1709
doi: 10.1002/1521-3773(20020517)41:10<1705::AID-ANIE1705>3.0.CO;2-M
160 Sone E D, Zubarev E R, Stupp S I.Supramolecular templating of single and double nanohelices of cadmium sulfide.Small , 2005, 1(7): 694–697
doi: 10.1002/smll.200500026
161 Lin Y Y, Qiao Y, Gao C, . Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials.Chemistry of Materials, 2010, 22(24): 6711–6717
doi: 10.1021/cm102181e
162 Chen C L, Zhang P J, Rosi N L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices.Journal of the American Chemical Society, 2008, 130(41): 13555–13557
doi: 10.1021/ja805683r
163 Chen C L, Rosi N L. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. Journal of the American Chemical Society, 2010, 132(20): 6902–6903
doi: 10.1021/ja102000g
164 Lamm M S, Sharma N, Rajagopal K, . Laterally spaced linear nanoparticle arrays templated by laminated β-sheet fibrils.Advanced Materials , 2008, 20(3): 447–451
doi: 10.1002/adma.200701413
165 Chhabra R, Moralez J G, Raez J, . One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.Journal of the American Chemical Society, 2010, 132(1): 32–33
doi: 10.1021/ja908775g
166 Dreyfus R, Leunissen M E, Sha R, . Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory.Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(4): 041404 (10 pages)
167 Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream.Science, 2004, 303(5665): 1818–1822
doi: 10.1126/science.1095833
168 Drummond C J, Fong C.Surfactant self-assembly objects as novel drug delivery vehicles.Current Opinion in Colloid & Interface Science, 1999, 4(6): 449–456
doi: 10.1016/S1359-0294(00)00020-0
169 Hughes G A. Nanostructure-mediated drug delivery.Nanomedicine, 2005, 1(1): 22–30
doi: 10.1016/j.nano.2004.11.009
170 Bromberg L. Polymeric micelles in oral chemotherapy.Journal of Controlled Release, 2008, 128(2): 99–112
doi: 10.1016/j.jconrel.2008.01.018
171 Soussan E, Cassel S, Blanzat M, . Drug delivery by soft matter: matrix and vesicular carriers.Angewandte Chemie International Edition , 2009, 48(2): 274–288
doi: 10.1002/anie.200802453
172 De Cock L J, De Koker S, De Geest B G, . Polymeric multilayer capsules in drug delivery.Angewandte Chemie International Edition, 2010, 49(39): 6954–6973
doi: 10.1002/anie.200906266
173 Roesler A, Vandermeulen G W M, Klok H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers.Advanced Drug Delivery Reviews, 2001, 53(1): 95–108
doi: 10.1016/S0169-409X(01)00222-8
174 Vemula P K, Li J, John G. Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs.Journal of the American Chemical Society, 2006, 128(27): 8932–8938
doi: 10.1021/ja062650u
175 Bae Y, Fukushima S, Harada A, . Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change.Angewandte Chemie International Edition, 2003, 42(38): 4640–4643
doi: 10.1002/anie.200250653
176 Ngweniform P, Li D, Mao C B. Self-assembly of drug-loaded liposomes on genetically engineered protein nanotubes: a potential anti-cancer drug delivery vector.Soft Matter, 2009, 5(5): 954–956
doi: 10.1039/b817863a
177 Zhang L, Rakotondradany F, Myles A J, . Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.Biomaterials, 2009, 30(7): 1309–1320
doi: 10.1016/j.biomaterials.2008.11.020
[1] Fengyi GUAN,Jiaju LU,Xiumei WANG. A novel honeycomb cell assay kit designed for evaluating horizontal cell migration in response to functionalized self-assembling peptide hydrogels[J]. Front. Mater. Sci., 2017, 11(1): 13-21.
[2] Danxue LI,Xueping LV,Huanxin TU,Xuedong ZHOU,Haiyang YU,Linglin ZHANG. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin[J]. Front. Mater. Sci., 2015, 9(3): 293-302.
[3] Xi LIU,Bin PI,Hui WANG,Xiu-Mei WANG. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration[J]. Front. Mater. Sci., 2015, 9(1): 1-13.
[4] Ying SHI, Song WANG, Xiu-Mei WANG, Qiang CAI, Fu-Zhai CUI, Heng-De LI. Hierarchical self-assembly of a collagen mimetic peptide (PKG)n(POG)2n(DOG)n via electrostatic interactions[J]. Front Mater Sci, 2011, 5(3): 293-300.
[5] Sheng LU, P. CHEN. Constructing biomaterials using self-assembling peptide building blocks[J]. Front. Mater. Sci., 2010, 4(2): 145-151.
[6] A. SUGISAKA, H. INOUE, H. NAGASAWA. Structure-activity relationship of CAP-1, a cuticle peptide of the crayfish Procambarus clarkii, in terms of calcification inhibitory activity[J]. Front Mater Sci Chin, 2009, 3(2): 183-186.
[7] LI Hai-bin, TIAN Zhen, WANG Meng, ZHANG Ai-ying, FENG Zeng-guo. Synthesis and characterization of novel triblock copolymers comprising poly(tetrahydrofuran) as a central block and poly(-benzyl -glutamate)s as outer blocks[J]. Front. Mater. Sci., 2008, 2(1): 84-90.
[8] TIAN Zhen, WANG Meng, ZHANG Aiying, FENG Zengguo. Study on synthesis of glycopeptide-based triblock copolymers and their aggregation behavior in water[J]. Front. Mater. Sci., 2007, 1(2): 162-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed