Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 145-151    https://doi.org/10.1007/s11706-010-0021-4
Research articles
Constructing biomaterials using self-assembling peptide building blocks
Sheng LU1,P. CHEN1, 2,
1.Department of Chemical Engineering and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; 2.2010-07-07 11:00:08;
 Download: PDF(670 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular self-assembly is ubiquitous in nature and has recently emerged as a new bottom-up approach in constructing biomaterials. Synthetic peptides assemble through specific molecular recognition and form diverse nanostructures. The resulting versatile peptide self-assemblies may be used in a wide range of biological and medical applications. Examples of two self-assembling peptide systems are presented and techniques for self-assembly control are discussed.
Keywords peptide      biomaterial      self-assembly      
Issue Date: 05 June 2010
 Cite this article:   
Sheng LU,管理员,P. CHEN. Constructing biomaterials using self-assembling peptide building blocks[J]. Front. Mater. Sci., 2010, 4(2): 145-151.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0021-4
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/145
Zhao X J, Zhang S G. Fabricationof molecular materials using peptide construction motifs. Trends in Biotechnology, 2004, 22(9): 470―476

doi: 10.1016/j.tibtech.2004.07.011
Lehn J M, Eliseev A V. Dynamic combinatorial chemistry. Science, 2001, 291(5512): 2331―2332

doi: 10.1126/science.1060066
Chen P. Self-assembly of ionic-complementary peptides: a physicochemicalviewpoint. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 2005, 261(1―3): 3―24

doi: 10.1016/j.colsurfa.2004.12.048
Pagel K, Vagt T, Kohajda T, et al. From α-helix to β-sheet— a reversible metal ion induced peptide secondary structureswitch. Organic & Biomolecular Chemistry, 2005, 3(14): 2500―2502

doi: 10.1039/b505979h
Venkatraman J, Shankaramma S C, Balaram P. Design of folded peptides. Chemical Reviews, 2001, 101(10): 3131―3152

doi: 10.1021/cr000053z
Fairman R, Akerfeldt K S. Peptides as novel smart materials. CurrentOpinion in Structural Biology, 2005, 15(4): 453―463

doi: 10.1016/j.sbi.2005.07.005
Cavalli S, Kros A. Scope and applicationsof amphiphilic alkyl- and lipopeptides. Advanced Materials, 2008, 20(3): 627―631

doi: 10.1002/adma.200701914
Zhang S G, Marini D M, Hwang W, et al. Design of nanostructuredbiological materials through self-assembly of peptides and proteins. Current Opinion in Chemical Biology, 2002, 6(6): 865―871

doi: 10.1016/S1367-5931(02)00391-5
Zhang S G. Emerging biological materials through molecular self-assembly. Biotechnology Advances, 2002, 20(5―6): 321―339

doi: 10.1016/S0734-9750(02)00026-5
Langer R, Tirrell D A. Designing materials for biology and medicine. Nature, 2004, 428(6982): 487―492

doi: 10.1038/nature02388
Kokkoli E, Mardilovich A, Wedekind A, et al. Self-assembly andapplications of biomimetic and bioactive peptide-amphiphiles. Soft Matter, 2006, 2(12): 1015―1024

doi: 10.1039/b608929a
Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralizationof peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684―1688

doi: 10.1126/science.1063187
Silva G A, Czeisler C, Niece K L, et al. Selective differentiationof neural progenitor cells by high-epitope density nanofibers. Science, 2004, 303(5662): 1352―1355

doi: 10.1126/science.1093783
Finlay B B, Hancock R E W. Can innate immunity be enhanced to treat microbial infections? Nature Reviews Microbiology, 2004, 2(6): 497―504

doi: 10.1038/nrmicro908
Liu L H, Xu K, Wang H, et al. Self-assembled cationic peptidenanoparticles as an efficient antimicrobial agent. Nature Nanotechnology, 2009, 4(7): 457―463

doi: 10.1038/nnano.2009.153
Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides.An abundant source of membrane-permeable peptides having potentialas carriers for intracellular protein delivery. The Journal of Biological Chemistry, 2001, 276(8): 5836―5840

doi: 10.1074/jbc.M007540200
Li C, Peters A S, Meredith E L, et al. Design and synthesisof potent sensitizers of Gram-negative bacteria based on a cholicacid scaffolding. Journal of the AmericanChemical Society, 1998, 120(12): 2961―2962

doi: 10.1021/ja973881r
Santoso S, Hwang W, Hartman H, et al. Self-assembly of surfactant-likepeptides with variable glycine tails to form nanotubes and nanovesicles. Nano Letters, 2002, 2(7): 687―691

doi: 10.1021/nl025563i
Vauthey S, Santoso S, Gong H, et al. Molecular self-assemblyof surfactant-like peptides to form nanotubes and nanovesicles. Proceedings of the National Academy of Sciencesof the United States of America, 2002, 99(8): 5355―5360

doi: 10.1073/pnas.072089599
von Maltzahn G, Vauthey S, Santoso S, et al. Positively chargedsurfactant-like peptides self-assemble into nanostructures. Langmuir, 2003, 19(10): 4332―4337

doi: 10.1021/la026526+
Kiley P, Zhao X, Vaughn M, et al. Self-assembling peptide detergentsstabilize isolated photosystem I on a dry surface for an extendedtime. PLoS Biology, 2005, 3(7): 1180―1186

doi: 10.1371/journal.pbio.0030230
Yeh J I, Du S, Tortajada A, et al. Peptergents: peptide detergentsthat improve stability and functionality of a membrane protein, glycerol-3-phosphatedehydrogenase. Biochemistry, 2005, 44(51): 16912―16919

doi: 10.1021/bi051357o
Zhao X J, Nagai Y, Reeves P J, et al. Designer short peptide surfactantsstabilize G protein-coupled receptor bovine rhodopsin. Proceedings of the National Academy of Sciences of the United Statesof America, 2006, 103(47): 17707―17712

doi: 10.1073/pnas.0607167103
Zhang S, Holmes T, Lockshin C, et al. Spontaneous assemblyof a self-complementary oligopeptide to form a stable macroscopicmembrane. Proceedings of the National Academyof Sciences of the United States of America, 1993, 90(8): 3334―3338

doi: 10.1073/pnas.90.8.3334
Fung S Y, Keyes C, Duhamel J, et al. Concentration effect on theaggregation of a self-assembling oligopeptide. Biophysical Journal, 2003, 85(1): 537―548

doi: 10.1016/S0006-3495(03)74498-1
Hong Y, Pritzker M D, Legge R L, et al. Effect of NaCl andpeptide concentration on the self-assembly of an ionic-complementarypeptide EAK16-II. Colloids and SurfacesB: Biointerfaces, 2005, 46(3): 152―161

doi: 10.1016/j.colsurfb.2005.11.004
Hong Y S, Lau L, Legge R, et al. Critical self-assembly concentrationof an ionic-complementary peptide EAK16-I. Journal of Adhesion, 2004, 80(10―11): 913―931

doi: 10.1080/00218460490508616
Yang H, Fung S Y, Pritzker M, et al. Mechanical-force-induced nucleationand growth of peptide nanofibers at liquid/solid interfaces. Angewandte Chemie International Edition, 2008, 47(23): 4397―4400

doi: 10.1002/anie.200705404
Hong Y S, Legge R L, Zhang S, et al. Effect of amino acid sequenceand pH on nanofiber formation of self-assembling peptides EAK16-IIand EAK16-IV. Biomacromolecules, 2003, 4(5): 1433―1442

doi: 10.1021/bm0341374
Yang H, Pritzker M, Fung S Y, et al. Anion effect onthe nanostructure of a metal ion binding self-assembling peptide. Langmuir, 2006, 22(20): 8553―8562

doi: 10.1021/la061238p
Keyes-Baig C, Duhamel J, Fung S Y, et al. Self-assemblingpeptide as a potential carrier of hydrophobic compounds. Journal of the American Chemical Society, 2004, 126(24): 7522―7532

doi: 10.1021/ja0381297
Fung S Y, Yang H, Bhola P T, et al. Self-assembling peptide as apotential carrier for hydrophobic anticancer drug ellipticine: complexation,release and in vitro delivery. Advanced Functional Materials, 2009, 19(1): 74―83

doi: 10.1002/adfm.200800860
Fung S Y, Yang H, Chen P. Sequence effect of self-assembling peptideson the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine. PLoS One, 2008, 3(4): e1956
Zhang S G, Holmes T C, DiPersio C M, et al. Self-complementaryoligopeptide matrices support mammalian cell attachment. Biomaterials, 1995, 16(18): 1385―1393

doi: 10.1016/0142-9612(95)96874-Y
Holmes T C, de Lacalle S, Su X, et al. Extensive neuriteoutgrowth and active synapse formation on self-assembling peptidescaffolds. Proceedings of the NationalAcademy of Sciences of the United States of America, 2000, 97(12): 6728―6733

doi: 10.1073/pnas.97.12.6728
Koutsopoulos S, Unsworth L D, Nagai Y, et al. Controlled releaseof functional proteins through designer self-assembling peptide nanofiberhydrogel scaffold. Proceedings of the NationalAcademy of Sciences of the United States of America, 2009, 106(12): 4623―4628

doi: 10.1073/pnas.0807506106
Wang X M, Horii A, Zhang S G. Designer functionalized self-assemblingpeptide nanofiber scaffolds for growth, migration, and tubulogenesisof human umbilical vein endothelial cells. Soft Matter, 2008, 4(12): 2388―2395

doi: 10.1039/b807155a
Pagel K, Wagner S C, Samedov K, et al. Random coils, β-sheetribbons, and α-helical fibers: one peptide adopting three differentsecondary structures at will. Journal ofthe American Chemical Society, 2006, 128(7): 2196―2197

doi: 10.1021/ja057450h
Banwell E F, Abelardo E S, Adams D J, et al. Rational designand application of responsive α-helical peptide hydrogels. Nature Materials, 2009, 8(7): 596―600

doi: 10.1038/nmat2479
Shao H, Parquette J R. Controllable peptide-dendron self-assembly: interconversion of nanotubesand fibrillar nanostructures. AngewandteChemie International Edition, 2009, 48(14): 2525―2528

doi: 10.1002/anie.200805010
Lim Y-B, Moon K-S, Lee M. Stabilization of an α helix byβ-sheet-mediated self-assembly of a macrocyclic peptide. Angewandte Chemie International Edition, 2009, 48(9): 1601―1605

doi: 10.1002/anie.200804665
Williams N K, Liepinsh E, Watt S J, et al. Stabilization ofnative protein fold by intein-mediated covalent cyclization. Journal of Molecular Biology, 2005, 346(4): 1095―1108

doi: 10.1016/j.jmb.2004.12.037
Tan R, Chen L, Buettner J A, et al. RNA recognitionby an isolated α helix. Cell, 1993, 73(5): 1031―1040

doi: 10.1016/0092-8674(93)90280-4
[1] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[2] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[3] Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers[J]. Front. Mater. Sci., 2017, 11(3): 223-232.
[4] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[5] Fengyi GUAN,Jiaju LU,Xiumei WANG. A novel honeycomb cell assay kit designed for evaluating horizontal cell migration in response to functionalized self-assembling peptide hydrogels[J]. Front. Mater. Sci., 2017, 11(1): 13-21.
[6] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[7] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[8] Junbo LI,Jianlong ZHAO,Wenlan WU,Ju LIANG,Jinwu GUO,Huiyun ZHOU,Lijuan LIANG. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles[J]. Front. Mater. Sci., 2016, 10(2): 178-186.
[9] Yi ZHANG,Cencen ZHANG,Lijie LIU,David L. KAPLAN,Hesun ZHU,Qiang LU. Hierarchical charge distribution controls self-assembly process of silk in vitro[J]. Front. Mater. Sci., 2015, 9(4): 382-391.
[10] Danxue LI,Xueping LV,Huanxin TU,Xuedong ZHOU,Haiyang YU,Linglin ZHANG. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin[J]. Front. Mater. Sci., 2015, 9(3): 293-302.
[11] Ju LIANG,Wenlan WU,Junbo LI,Chen HAN,Shijie ZHANG,Jinwu GUO,Huiyun ZHOU. Synthesis and self-assembly of temperature and anion double responsive ionic liquid block copolymers[J]. Front. Mater. Sci., 2015, 9(3): 254-263.
[12] Xi LIU,Bin PI,Hui WANG,Xiu-Mei WANG. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration[J]. Front. Mater. Sci., 2015, 9(1): 1-13.
[13] Lei ZHOU,Guo-Xin TAN,Cheng-Yun NING. Modification of biomaterials surface by mimetic cell membrane to improve biocompatibility[J]. Front. Mater. Sci., 2014, 8(4): 325-331.
[14] Rong-Chang ZENG,Wei-Chen QI,Ying-Wei SONG,Qin-Kun HE,Hong-Zhi CUI,En-Hou HAN. In vitro degradation of MAO/PLA coating on Mg--1.21Li--1.12Ca--1.0Y alloy[J]. Front. Mater. Sci., 2014, 8(4): 343-353.
[15] Xue-Nan GU,Shuang-Shuang LI,Xiao-Ming Li,Yu-Bo Fan. Magnesium based degradable biomaterials: A review[J]. Front. Mater. Sci., 2014, 8(3): 200-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed