Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (3) : 301-310    https://doi.org/10.1007/s11706-011-0142-4
RESEARCH ARTICLE
In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells
Zhi HUANG1, Yan CHEN2, Qing-Ling FENG1(), Wei ZHAO3, Bo YU4(), Jing TIAN4, Song-Jian LI4, Bo-Miao LIN5
1. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China; 3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4. Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China; 5. Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
 Download: PDF(1116 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.

Keywords mineralized collagen fibrils      in situ-forming      injectable      mesenchymal stem cells      tissue engineered bone     
Corresponding Author(s): FENG Qing-Ling,Email:biomater@mail.tsinghua.edu.cn (Q.L.F.); YU Bo,Email:gzyubo@gmail.com (B.Y.)   
Issue Date: 05 September 2011
 Cite this article:   
Zhi HUANG,Yan CHEN,Qing-Ling FENG, et al. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells[J]. Front Mater Sci, 2011, 5(3): 301-310.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0142-4
https://academic.hep.com.cn/foms/EN/Y2011/V5/I3/301
Fig.1  Intraoperative view of a cylindrical 7 mm × 10 mm osseous critical-sized defect at the distal femoral end of the rabbit.
Fig.2  High resolution μCT images in rabbit distal femur taken 12 weeks after implantation. The untreated defect, the formation of new bone remains restricted to the edge of the cavity and the largest part of the centre of the cavity remains free of bone. The chitosan treated defect, trabecula from the surrounding bone is growing towards the centre of the cavity, but the cavity is still visible. The CS/nHAC treated defect, most of the cavity is occupied by new bone, but the central part of the cavity is still free of bone. The CS/nHAC/MSC treated defect, trabecula from the surrounding bone is growing towards the centre of the cavity, and the central part of the cavity is occupied by new bone. (C: cavity; T: trabecula; N: new bone)
Fig.3  Bone-mineral density measured in the implanted area, with Hounsfield units (HU) at 4, 8 and 12 weeks for each group ( = 3). (a - untreated group; b - CS group; c - CS/nHAC group; d - CS/nHAC/MSC group; * - <0.05)
Fig.4  Light microscopy photographs of the histology sections taken 12 weeks after implantation for CS group: HE, 50×; HE, 200×; Masson, 50×; Masson, 200×. (BM: bone marrow; CS: chitosan; FC: fibrotic capsule)
Fig.5  Light microscopy photographs of the histology sections taken 12 weeks after implantation for CS/nHAC group: HE, 40×; HE, 200×; Masson, 40×; Masson, 400×. (NB: newly formed bone; BM: bone marrow; CS: chitosan; HA: nHAC)
Fig.6  Light microscopy photographs of the histology sections taken 12 weeks after implantation for the CS/nHAC/MSC group: HE, 20×; HE, 400×; Masson, 20×; Masson, 400×. (NB: newly formed bone; BM: bone marrow; CB: collagen bundles)
Fig.7  Raman spectra for the native bone and newly formed bone in the CS/nHAC/MSC group.
1 Sittinger M, Hutmacher D W, Risbud M V. Current strategies for cell delivery in cartilage and bone regeneration. Current Opinion in Biotechnology , 2004, 15(5): 411–418
doi: 10.1016/j.copbio.2004.08.010
2 Hou Q P, De Bank P A, Shakesheff K M. Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry , 2004, 14(13): 1915–1923
doi: 10.1039/b401791a
3 Kretlow J D, Young S, Klouda L, . Injectable biomaterials for regenerating complex craniofacial tissues. Advanced Materials , 2009, 21(32-33): 3368–3393
doi: 10.1002/adma.200802009
4 Cho M H, Kim K S, Ahn H H, . Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Engineering Part A , 2008, 14(6): 1099–1108
doi: 10.1089/ten.tea.2007.0305
5 Chenite A, Chaput C, Wang D, . Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials , 2000, 21(21): 2155–2161
doi: 10.1016/S0142-9612(00)00116-2
6 Hoemann C D, Sun J, Legare A, . Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis and Cartilage , 2005, 13(4): 318–329
doi: 10.1016/j.joca.2004.12.001
7 Guzman-Morales J, El-Gabalawy H, Pham M H, . Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion. Bone , 2009, 45(4): 617–626
doi: 10.1016/j.bone.2009.06.014
8 Ahmadi R, Burns A J, de Bruijn J D. Chitosan-based hydrogels do not induce angiogenesis. Journal of Tissue Engineering and Regenerative Medicine , 2010, 4(4): 309–315
doi: 10.1002/term.247
9 Olszta M J, Cheng X G, Jee S S, . Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports , 2007, 58(3-5): 77–116
doi: 10.1016/j.mser.2007.05.001
10 Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering R: Reports , 2007, 57(1-6): 1–27
11 Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials , 2003, 15(16): 3221–3226
doi: 10.1021/cm030080g
12 Liao S S, Guan K, Cui F Z, . Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine , 2003, 28(17): 1954–1960
doi: 10.1097/01.BRS.0000083240.13332.F6
13 Li X M, Feng Q L, Jiao Y F, . Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polymer International , 2005, 54(7): 1034–1040
doi: 10.1002/pi.1804
14 Huang Z, Feng Q, Yu B, . Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Materials Science and Engineering C , 2011, 31(3): 683–687
doi: 10.1016/j.msec.2010.12.014
15 Huang Z, Tian J, Yu B, . A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomedical Materials , 2009, 4(5): 055005(7 pages)
16 Huang Z, Yu B, Feng Q, . In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydrate Polymers , 2011, 85(1): 261–267
doi: 10.1016/j.carbpol.2011.02.029
17 Pittenger M F, Mackay a M, Beck S C, . Multilineage potential of adult human mesenchymal stem cells. Science , 1999, 284(5411): 143–147
doi: 10.1126/science.284.5411.143
18 Mankani M H, Kuznetsov S A, Wolfe R M, . In vivo bone formation by human bone marrow stromal cells: Reconstruction of the mouse calvarium and mandible. Stem Cells , 2006, 24(9): 2140–2149
doi: 10.1634/stemcells.2005-0567
19 Gauthier O, Muller R, Von Stechow D, . In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials , 2005, 26(27): 5444–5453
doi: 10.1016/j.biomaterials.2005.01.072
20 Giavaresi G, Fini M, Salvage J, . Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. Journal of Materials Science: Materials in Medicine , 2010, 21(2): 615–626
doi: 10.1007/s10856-009-3870-6
21 Yoon S J, Park K S, Kim M S, . Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Engineering , 2007, 13(5): 1125–1133
doi: 10.1089/ten.2006.0287
22 Kasten P, Vogel J, Geiger F, . The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials , 2008, 29(29): 3983–3992
doi: 10.1016/j.biomaterials.2008.06.014
23 Hoemann C D, Chen G P, Marchand C, . Scaffold-guided subchondral bone repair implication of neutrophils and alternatively activated arginase-1+ macrophages. The American Journal of Sports Medicine , 2010, 38(9): 1845–1856
doi: 10.1177/0363546510369547
24 de Oliveira R C G, Leles C R, Normanha L M, . Assessments of trabecular bone density at implant sites on CT images. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology , 2008, 105(2): 231–238
doi: 10.1016/j.tripleo.2007.08.007
25 Kobayashi F, Ito J, Hayashi T, . A study of volumetric visualization and quantitative evaluation of bone trabeculae in helical CT. Dentomaxillofacial Radiology , 2003, 32(3): 181–185
doi: 10.1259/dmfr/28959099
26 Shinbo J, Mainil-Varlet P, Watanabe A, . Evaluation of early tissue reactions after lumbar intertransverse process fusion using CT in a rabbit. Skeletal Radiology , 2010, 39(4): 369–373
doi: 10.1007/s00256-009-0733-7
27 Bouxsein M L, Boyd S K, Christiansen B A, . Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research , 2010, 25(7): 1468–1486
doi: 10.1002/jbmr.141
28 Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm. Journal of the Optical Society of America A: Optics, Image Science, and Vision , 1984, 1(6): 612–619
doi: 10.1364/JOSAA.1.000612
29 Goodyear S R, Gibson L R, Skakle J M S, . A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone , 2009, 44(5): 899–907
doi: 10.1016/j.bone.2009.01.008
30 Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood , 2005, 105(4): 1815–1822
doi: 10.1182/blood-2004-04-1559
31 Kinnaird T, Stabile E, Burnett M S, . Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation , 2004, 109(12): 1543–1549
doi: 10.1161/01.CIR.0000124062.31102.57
32 Tatebe M, Nakamura R, Kagami H, . Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy , 2005, 7(6): 520–530
doi: 10.1080/14653240500361350
33 Korda M, Hua J, Little N J, . The effect of mesenchymal stromal cells on the osseoinduction of impaction grafts. Tissue Engineering Part A , 2010, 16(2): 675–683
doi: 10.1089/ten.tea.2008.0643
34 Chellat F, Tabrizian M, Dumitriu S, . In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. Journal of Biomedical Materials Research , 2000, 51(1): 107–116
doi: 10.1002/(SICI)1097-4636(200007)51:1&lt;107::AID-JBM14&gt;3.0.CO;2-F
35 Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: Nanohydroxyapatite/collagen/poly(L-lactide). Tissue Engineering , 2004, 10(1-2): 73–80
doi: 10.1089/107632704322791718
36 Li X M, Feng Q L, Liu X H, . Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials , 2006, 27(9): 1917–1923
doi: 10.1016/j.biomaterials.2005.11.013
37 Li X M, Liu X H, Zhang G P, . Repairing 25 mm bone defect using fibres reinforced scaffolds as well as autograft bone. Bone , 2008, 43(suppl 1): S94
doi: 10.1016/j.bone.2008.07.185
38 Frassoni F, Labopin M, Bacigalupo A, . Expanded mesenchymal stem cells (MSC), co-infused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft versus host disease: A matched pair analysis. Bone Marrow Transplantation , 2002, 29(suppl 2): S2
39 Rasmusson I, Ringden O, Sundberg B, . Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research , 2005, 305(1): 33–41
doi: 10.1016/j.yexcr.2004.12.013
[1] Yuxuan MAO, Mingming PAN, Huilin YANG, Xiao LIN, Lei YANG. Injectable hydrogel wound dressing based on strontium ion cross-linked starch[J]. Front. Mater. Sci., 2020, 14(2): 232-241.
[2] Liu YUAN, Wenshuai FAN, Linyingjun HAN, Changan GUO, Zuoqin YAN, Meifang ZHU, Xiumei MO. Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses[J]. Front. Mater. Sci., 2018, 12(1): 95-104.
[3] Junfeng ZHOU,Liang CHENG,Xiaodan SUN,Xiumei WANG,Shouhong JIN,Junxiang LI,Qiong WU. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation[J]. Front. Mater. Sci., 2016, 10(3): 260-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed