Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (3) : 220615    https://doi.org/10.1007/s11706-022-0615-7
RESEARCH ARTICLE
Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering
Xiaoyu MA1, Guifeng CHEN1, Xiaoming ZHANG1, Taoyuan JIA1, Weiqi ZHAO1, Zhaojun MO2, Heyan LIU1, Xuefang DAI1(), Guodong LIU1()
1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
2. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
 Download: PDF(3778 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heusler alloys are a kind of intermetallic compounds with highly-ordered arrangement of atoms. Many attractive functional materials have been developed in Heusler alloys. Due to the application requirements of materials in new-generation electronic devices and spintronics devices, one-dimensional nanostructured Heusler alloys with special functions are needed. In this work, it is proposed to grow one-dimensional Heusler alloy nanostructures (1D-HA-NSs) by magnetron sputtering plus anodic aluminum oxide (AAO) template. Nanowires with different shapes, amorphous-coated (AC) nanowires and nanotubes were successfully grown for several Heusler alloys. AC nanowires are the unique products of our method. Heusler alloy nanotubes are reported for the first time. The one-dimensional nanostructures grow on the surface of the AAO substrate rather than in the holes. The top of the pore wall is the nanostructure growth point, the shape of which determines the morphology of the nanostructures. A general growth mechanism model of one-dimensional nanostructures on AAO template was established and further confirmed by experimental observation.

Keywords Heusler alloy      one-dimensional nanostructure      magnetron sputtering     
Corresponding Author(s): Xuefang DAI,Guodong LIU   
Issue Date: 16 September 2022
 Cite this article:   
Xiaoyu MA,Guifeng CHEN,Xiaoming ZHANG, et al. Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering[J]. Front. Mater. Sci., 2022, 16(3): 220615.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0615-7
https://academic.hep.com.cn/foms/EN/Y2022/V16/I3/220615
Fig.1  (a)(b) The top morphology of Heusler alloys nanowire film on the AAO template. The areas framed in red correspond to the distribution areas of nanowires with the same shape as the frame. (c) Separated nanowires. (d) The cross-section morphology of Heusler alloys nanowire film on the AAO template. (e)(f)(g)(h)(i) The individual nanowires with triangular (panels (e) and (f)), square (panel (g)), and hexagonal (panels (h) and (i)) shapes. The compositions of the nanowires were listed in Table S1 (see ESI).
Fig.2  (a)(b) The individual AC nanowires of Heusler alloys. The top morphology of Heusler alloys nanowire film on the AAO template. (c)(d) The high-resolution atomic images. (e)(f) The electron diffraction patterns corresponding to crystal and amorphous regions, respectively.
Fig.3  (a) A complete individual nanotube of the Heusler alloy. (b)(c) The individual nanotubes with broken wall. (d) Fragments of nanotube wall. (e) The electron diffraction pattern of nanotube walls.
Fig.4  Magnetic field dependence of magnetization for 1D-HA-NS samples of Cr3Al, Co2CrAl, and Co2MnAl measured at 5 K.
Fig.5  The growth mechanism model of 1D-HA-NSs on AAO template. (a) The growth mechanism model of the triangular nanowires: when the ambient temperature is high enough during nanowire growth process, two back-to-back triangular nanowires are pasted together to form diamond nanowires due to the surface melting, and at the bottom, the growth mechanism of diamond nanowires was shown. (b) The growth mechanism model of the square nanowires. (c) When the defects occur on the hole array of AAO template, the large square nanowires (top left corner), nanotubes (the bottom), and hexagonal nanowires (top right corner) can be grown.
Fig.6  (a) The top view of the bare AAO template. The areas framed in red are viewed as the typical areas to grow 1D-HA-NSs with various morphologies. (b) The top view of the short-time (20 min) grown 1D-HA-NS film on the AAO template. (c) The enlarged typical zones with different 1D-HA-NSs. The small triangles, squares, hexagons and circles are marked to represent the morphology of the nanostructures growing in the areas framed in red.
1 P J Webster . Heusler alloys. Contemporary Physics, 1969, 10( 6): 559– 577
https://doi.org/10.1080/00107516908204800
2 C C M Campbell . Hyperfine field systematics in Heusler alloys. Journal of Physics F: Metal Physics, 1975, 5( 10): 1931– 1945
https://doi.org/10.1088/0305-4608/5/10/016
3 K, Manna Y, Sun L, Muechler , et al.. Heusler, Weyl and Berry. Nature Reviews Materials, 2018, 3( 8): 244– 256
https://doi.org/10.1038/s41578-018-0036-5
4 C, Felser L, Wollmann S, Chadov , et al.. Basics and prospective of magnetic Heusler compounds. APL Materials, 2015, 3( 4): 041518
https://doi.org/10.1063/1.4917387
5 Groot R A, de F M, Mueller Engen P G, van , et al.. New class of materials: half-merallic ferromagnets. Physical Review Letters, 1983, 50( 25): 2024– 2027
https://doi.org/10.1103/PhysRevLett.50.2024
6 P J, Webster K R A, Ziebeck S L, Town , et al.. Magnetic order and phase transformation in Ni2MnGa. Philosophical Magazine B, 1984, 49( 3): 295– 310
https://doi.org/10.1080/13642817408246515
7 K, Ullakko J K, Huang C, Kantner , et al.. Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters, 1996, 69( 13): 1966– 1968
https://doi.org/10.1063/1.117637
8 X L Wang . Proposal for a new class of materials: spin gapless semiconductors. Physical Review Letters, 2008, 100( 15): 156404
https://doi.org/10.1103/PhysRevLett.100.156404 pmid: 18518135
9 X L, Wang S X, Dou C Zhang . Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2( 1): 31– 38
https://doi.org/10.1038/asiamat.2010.7
10 S, Ouardi G H, Fecher C, Felser , et al.. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. Physical Review Letters, 2013, 110( 10): 100401
https://doi.org/10.1103/PhysRevLett.110.100401 pmid: 23521232
11 B A, Bernevig T L, Hughes S C Zhang . Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314( 5806): 1757– 1761
https://doi.org/10.1126/science.1133734 pmid: 17170299
12 M, König S, Wiedmann C, Brüne , et al.. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318( 5851): 766– 770
https://doi.org/10.1126/science.1148047 pmid: 17885096
13 S, Chadov X, Qi J, Kübler , et al.. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Materials, 2010, 9( 7): 541– 545
https://doi.org/10.1038/nmat2770 pmid: 20512154
14 H, Lin L A, Wray Y, Xia , et al.. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Materials, 2010, 9( 7): 546– 549
https://doi.org/10.1038/nmat2771 pmid: 20512153
15 D, Xiao Y, Yao W, Feng , et al.. Half-Heusler compounds as a new class of three-dimensional topological insulators. Physical Review Letters, 2010, 105( 9): 096404
https://doi.org/10.1103/PhysRevLett.105.096404 pmid: 20868181
16 A A Burkov . Topological semimetals. Nature Materials, 2016, 15( 11): 1145– 1148
https://doi.org/10.1038/nmat4788 pmid: 27777403
17 B, Yan C Felser . Topological materials: Weyl semimetals. Annual Review of Condensed Matter Physics, 2017, 8 : 337– 354
https://doi.org/10.1146/annurev-conmatphys-031016-025458
18 G, Chang S Y, Xu B J, Wieder , et al.. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Physical Review Letters, 2017, 119( 20): 206401
https://doi.org/10.1103/PhysRevLett.119.206401 pmid: 29219365
19 J Moore . Topological insulators: the next generation. Nature Physics, 2009, 5( 6): 378– 380
https://doi.org/10.1038/nphys1294
20 H J, Zhang C X, Liu X L, Qi , et al.. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 2009, 5( 6): 438– 442
https://doi.org/10.1038/nphys1270
21 X T, Wang Z X, Cheng J L, Wang , et al.. Recent advances in the Heusler based spin-gapless semiconductors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4( 30): 7176– 7192
https://doi.org/10.1039/C6TC01343K
22 M S, Gabor T, Petrisor C, Tiusan , et al.. Magnetic and structural anisotropies of Co2FeAl Heusler alloy epitaxial thin films. Physical Review B: Condensed Matter and Materials Physics, 2011, 84( 13): 134413
https://doi.org/10.1103/PhysRevB.84.134413
23 Y, Sakuraba J, Nakata M, Oogane , et al.. Fabrication of Co2MnAl Heusler alloy epitaxial film using Cr buffer layer. Japanese Journal of Applied Physics, 2005, 44( 9A): 6535– 6537
https://doi.org/10.1143/JJAP.44.6535
24 M, Jourdan J, Minár J, Braun , et al.. Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nature Communications, 2014, 5( 1): 3974
https://doi.org/10.1038/ncomms4974 pmid: 24875774
25 H, Reichlova R, Schlitz S, Beckert , et al.. Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Applied Physics Letters, 2018, 113( 21): 212405
https://doi.org/10.1063/1.5048690
26 N Y, Sun Y Q, Zhang H R, Fu , et al.. Perpendicular magnetic anisotropy in Mn2CoAl thin film. AIP Advances, 2016, 6( 1): 015006
https://doi.org/10.1063/1.4939934
27 M E, Jamer G E, Sterbinsky G M, Stephen , et al.. Magnetic properties of low-moment ferrimagnetic Heusler Cr2CoGa thin films grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109( 18): 182402
https://doi.org/10.1063/1.4966634
28 B, Ernst R, Sahoo Y, Sun , et al.. Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films. Physical Review B, 2019, 100( 5): 054445
https://doi.org/10.1103/PhysRevB.100.054445
29 H, Schneider G, Jakob M, Kallmayer , et al.. Epitaxial film growth and magnetic properties of Co2FeSi. Physical Review B: Condensed Matter and Materials Physics, 2006, 74( 17): 174426
https://doi.org/10.1103/PhysRevB.74.174426
30 Y, Shimanuki K, Kudo T, Ishibe , et al.. Thermoelectric properties of single-phase full-Heusler alloy Fe2TiSi films with D03-type disordering. Journal of Applied Physics, 2020, 127( 5): 055106
https://doi.org/10.1063/1.5141949
31 N V, Uvarov Y V, Kudryavtsev A F, Kravets , et al.. Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films. Journal of Applied Physics, 2012, 112( 6): 063909
https://doi.org/10.1063/1.4752870
32 L, Bainsla R, Yilgin J, Okabayashi , et al.. Structural and magnetic properties of epitaxial thin films of the equiatomic quaternary CoFeMnSi Heusler alloy. Physical Review B, 2017, 96( 9): 094404
https://doi.org/10.1103/PhysRevB.96.094404
33 V, Asvini G, Saravanan R K, Kalaiezhily , et al.. Effect of substrate temperature on structural, morphological, magnetic, and electrical properties of Fe2CoSi Heusler alloy thin films for spin-based device applications. Journal of Superconductivity and Novel Magnetism, 2019, 32( 7): 2247– 2257
https://doi.org/10.1007/s10948-018-4955-6
34 S, Yamada S, Kobayashi F, Kuroda , et al.. Magnetic and transport properties of equiatomic quaternary Heusler CoFeVSi epitaxial films. Physical Review Materials, 2018, 2( 12): 124403
https://doi.org/10.1103/PhysRevMaterials.2.124403
35 Y, Jin P, Kharel S R, Valloppilly , et al.. Half-metallicity in highly L21-ordered CoFeCrAl thin films. Applied Physics Letters, 2016, 109( 14): 142410
https://doi.org/10.1063/1.4964464
36 A, Safeer N, Ahmad S, Khan , et al.. Magnetization behavior of electrochemically synthesized Co2MnSn full Heusler alloy nanowire arrays. Journal of Applied Physics, 2019, 125( 3): 034302
https://doi.org/10.1063/1.5058066
37 S, Khan N, Ahmad N, Ahmed , et al.. Analysis of electronic, magnetic and half-metallic properties of L21-type (Co2Mn0.5Fe0.5Sn) Heusler alloy nanowires synthesized by AC-electrodeposition in AAO templates. Journal of Magnetism and Magnetic Materials, 2018, 460 : 120– 127
https://doi.org/10.1016/j.jmmm.2018.03.028
38 S, Khan N, Ahmad N, Ahmed , et al.. Structural, magnetic and transport properties of Fe-based full Heusler alloy Fe2CoSn nanowires prepared by template-based electrodeposition. Journal of Magnetism and Magnetic Materials, 2018, 465 : 462– 470
https://doi.org/10.1016/j.jmmm.2018.05.013
39 P, Simon D, Wolf C, Wang , et al.. Synthesis and three-dimensional magnetic field mapping of Co2FeGa Heusler nanowires at 5 nm resolution. Nano Letters, 2016, 16( 1): 114– 120
https://doi.org/10.1021/acs.nanolett.5b03102 pmid: 26674206
40 M, Sharma A, Das B K Kuanr . Co-based full Heusler alloy nanowires: modulation of static and dynamic properties through deposition parameters. AIP Advances, 2019, 9( 12): 125054
https://doi.org/10.1063/1.5130036
41 K, Javed X M, Zhang S, Parajuli , et al.. Magnetization behavior of NiMnGa alloy nanowires prepared by DC electrodeposition. Journal of Magnetism and Magnetic Materials, 2020, 498 : 166232
https://doi.org/10.1016/j.jmmm.2019.166232
42 K R, Sapkota P, Gyawali A, Forbes , et al.. Synthesis and characterization of Co2FeAl nanowires. Journal of Applied Physics, 2012, 111( 12): 123906
https://doi.org/10.1063/1.4729807
43 H X, Lu Y C, Liu X L Kou . Communication-electrodeposition, microstructure and magnetic properties of Co2FeSn Heusler alloy nanowires. Journal of the Electrochemical Society, 2018, 165( 16): D813– D815
https://doi.org/10.1149/2.0751816jes
44 Y H, Li X L, Kou N Hou . Synthesis, microstructure and magnetic properties of Fe2CoAl nanofibers. Functional Materials Letters, 2017, 10( 4): 1750035
https://doi.org/10.1142/S1793604717500357
45 Y, Wu X L, Kou J J Huang . Fabrication and magnetic properties of electrospun Fe2NiGa nanofibers. Materials Express, 2018, 8( 4): 375– 380
https://doi.org/10.1166/mex.2018.1440
46 K, Seo N, Bagkar S I, Kim , et al.. Diffusion-driven crystal structure transformation: synthesis of Heusler alloy Fe3Si nanowires. Nano Letters, 2010, 10( 9): 3643– 3647
https://doi.org/10.1021/nl102093e pmid: 20677783
47 W Q, Zhao X F, Dai X M, Zhang , et al.. Preparation and physical properties of a Cr3Al film with a DO3 structure. IUCrJ, 2019, 6( 4): 552– 557
https://doi.org/10.1107/S2052252519004469 pmid: 31316800
48 J, Li H, Chen Y, Li , et al.. A theoretical design of half-metallic compounds by a long range of doping Mn for Heusler-type Cr3Al. Journal of Applied Physics, 2009, 105( 8): 083717
https://doi.org/10.1063/1.3116533
49 G Y, Gao K L Yao . Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: the D03-type Heusler alloys. Applied Physics Letters, 2013, 103( 23): 232409
https://doi.org/10.1063/1.4840318
50 I, Galanakis P H, Dederichs N Papanikolaou . Slater‒Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Physical Review B: Condensed Matter, 2002, 66( 17): 174429
https://doi.org/10.1103/PhysRevB.66.174429
[1] FMS-22615-OF-Mxy_suppl_1 Download
[1] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[2] Rong-Chang ZENG,Ke JIANG,Shuo-Qi LI,Fen ZHANG,Hong-Zhi CUI,En-Hou HAN. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B[J]. Front. Mater. Sci., 2015, 9(1): 66-76.
[3] JIANG Xiao-song, CHEN Jun-ying, HUANG Nan. Effect of micro-characterization on thrombus formation ability of TiO film[J]. Front. Mater. Sci., 2008, 2(4): 386-391.
[4] JIN Chenggang, WU Xuemei, SHA Zhendong, ZHUGE Lanjian. The structure and photoluminescence properties of ZnO/SiC multilayer film on Si substrate[J]. Front. Mater. Sci., 2007, 1(2): 158-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed