Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (2) : 230645    https://doi.org/10.1007/s11706-023-0645-9
RESEARCH ARTICLE
Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural
Lin Zhang, Lanlan Cheng, Yechen Hu, Qingguang Xiao, Xiufang Chen(), Wangyang Lu
National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(7243 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The catalytic conversion of biomass platform chemicals using abundant non-noble metal nanocatalysts is a challenging topic. Here, high-density cobalt oxide nanoparticles loaded on biomass-derived porous N-doped carbon (NC) was fabricated by a tandem hydrothermal pyrolysis and mild nitrate decomposition process, which is a green and cheap preparation method. The Co3O4 nanoparticles with the average size of 12 nm were uniformly distributed on the porous NC. The nanocomposites also possessed large surface area, high N content, good dispersibility in isopropanol, and furfural absorbability. Due to these characteristics, the novel cobalt nanocatalyst exhibited high catalytic activity for producing furfuryl alcohol, yielding 98.7% of the conversion and 97.1% of the selectivity at 160 °C for 6 h under 1 bar H2. The control experiments implied that both direct hydrogenation and transfer hydrogenation pathways co-existed in the hydrogenation reaction. The excellent catalytic activity of Co3O4@NC was attributed to the cooperative effects of porous NC and Co3O4 nanoparticles. This approach provides a new idea to design effective high-density non-noble metal oxide nanocatalysts for hydrogenation reactions, which can make full use of sustainable natural biomass.

Keywords biomass      N-doped carbon      cobalt oxide nanoparticle      hydrogenation reaction      low pressure     
Corresponding Author(s): Xiufang Chen   
Issue Date: 26 April 2023
 Cite this article:   
Lin Zhang,Lanlan Cheng,Yechen Hu, et al. Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural[J]. Front. Mater. Sci., 2023, 17(2): 230645.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0645-9
https://academic.hep.com.cn/foms/EN/Y2023/V17/I2/230645
Fig.1  A schematic pathway for FAL hydrogenation.
Fig.2  The preparation procedure of Co3O4@NC catalysts.
Fig.3  SEM images of (a)(b) NC and (c)(d) Co3O4@NC. (e) TEM image, (f)(g) HRTEM images, (h) SAED pattern, (i) SEM image and (j) corresponding elemental mapping images of Co3O4@NC.
Fig.4  (a) N2 adsorption/desorption isotherms and (b) corresponding pore size distributions of NC and Co3O4@NC.
Fig.5  (a) XRD patterns and (b) FTIR spectra of different samples.
Fig.6  High-resolution XPS spectra for (a) Co 2p, (b) C 1s, and (c) N 1s in NC and Co3O4@NC.
Fig.7  The dispersions of 10 mg Co3O4@C (left) and Co3O4@NC (right) in 15 mL isopropanol.
Fig.8  The amount of furfural absorbed on Co3O4@NC and Co3O4@C.
EntryCatalystConversion/%Selectivity/%
FATHFAMFOther
1?3.51.50.69.888.1
2N-containing hydrochars26.80.427.863.38.5
3NC/80045.953.54.04.138.4
4Cb)35.917.013.13.630.4
5Co3O47.569.515.115.40
630% Co3O4@NC58.980.76.73.78.9
740% Co3O4@NC98.797.11.61.30
850% Co3O4@NC69.259.623.36.710.4
940% Co3O4@Cb)99.968.22.22.327.3
10c)40% Co3O4@NC94.065.49.84.420.4
Tab.1  The hydrogenation of FAL over the different catalystsa)
Fig.9  The hydrogenation of FAL over the Co3O4@NC catalysts: (a) different durations; (b) different temperatures; (c) different solvents. Reaction conditions: 1 mmol FAL, 100 mg catalyst, 10 mL isopropanol, 1 bar H2, and 160 °C (panel (a)); 1 mmol FAL, 100 mg catalyst, 10 mL isopropanol, 1 bar H2, and 6 h (panel (b)); 1 mmol FAL, 100 mg catalyst, 10 mL solvent, 1 bar H2, 160 °C, and 6 h (panel (c)).
Fig.10  The hydrogenation of FAL over different Co3O4@NC catalysts: (a) different carbonization temperatures and (b) different nitrate decomposition temperatures of the Co3O4@NC catalysts. Reaction condition: 1 mmol FAL, 100 mg catalyst, 10 mL isopropanol, 1 bar H2, 160 °C, and 6 h.
Fig.11  The heterogeneity of Co3O4@NC in the FAL hydrogenation reaction.
1 L, Shuai M T, Amiri Y M, Questell-Santiago et al.. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.Science, 2016, 354(6310): 329–333
https://doi.org/10.1126/science.aaf7810 pmid: 27846566
2 Y, Li W, Yang H, Liu et al.. Template-mediated strategy to regulate hierarchically nitrogen–sulfur co-doped porous carbon as superior anode material for lithium capacity.Frontiers of Materials Science, 2022, 16(1): 220584
https://doi.org/10.1007/s11706-022-0584-x
3 F, Chen X, Liu Z, Wang et al.. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage.Frontiers of Materials Science, 2022, 16(4): 220619
https://doi.org/10.1007/s11706-022-0619-3
4 Z, Xu M, He Y, Zhou et al.. Spider web-like carbonized bacterial cellulose/MoSe nanocomposite with enhanced microwave attenuation performance and tunable absorption bands.Nano Research, 2021, 14(3): 738–746
https://doi.org/10.1007/s12274-020-3107-z
5 S, Song J, Zhang G, Gözaydın et al.. Production of terephthalic acid from corn stover lignin.Angewandte Chemie - International Edition, 2019, 58(15): 4934–4937
https://doi.org/10.1002/anie.201814284 pmid: 30680864
6 J, Wu X, Zhang Q, Chen et al.. One-pot hydrogenation of furfural into tetrahydrofurfuryl alcohol under ambient conditions over PtNi alloy catalyst.Energy & Fuels, 2020, 34(2): 2178–2184
https://doi.org/10.1021/acs.energyfuels.9b02811
7 C, Aellig I Hermans . Continuous D-fructose dehydration to 5-hydroxymethylfurfural under mild conditions.ChemSusChem, 2012, 5(9): 1737–1742
https://doi.org/10.1002/cssc.201200279 pmid: 22761084
8 J P, Lange der Heide E, van Buijtenen J, van et al.. Furfural ― a promising platform for lignocellulosic biofuels.ChemSusChem, 2012, 5(1): 150–166
https://doi.org/10.1002/cssc.201100648 pmid: 22213717
9 Y X, Yang C, Ochoa-Hernández V A D, O’Shea et al.. Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts.Applied Catalysis B: Environmental, 2014, 145: 91–100
https://doi.org/10.1016/j.apcatb.2013.03.038
10 S A, Khromova M V, Bykova O A, Bulavchenko et al.. Furfural hydrogenation to furfuryl alcohol over bimetallic Ni–Cu sol-gel catalyst: a model reaction for conversion of oxygenates in pyrolysis liquids.Topics in Catalysis, 2016, 59(15–16): 1413–1423
https://doi.org/10.1007/s11244-016-0649-0
11 D, Scholz C, Aellig I Hermans . Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural.ChemSusChem, 2014, 7(1): 268–275
https://doi.org/10.1002/cssc.201300774 pmid: 24227625
12 V V, Ordomsky J C, Schouten der Schaaf J, van et al.. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural.Applied Catalysis A: General, 2013, 451: 6–13
https://doi.org/10.1016/j.apcata.2012.11.013
13 W, Xu H, Wang X, Liu et al.. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst.Chemical Communications, 2011, 47(13): 3924–3926
https://doi.org/10.1039/c0cc05775d pmid: 21347475
14 Y, Nakagawa M, Tamura K Tomishige . Catalytic reduction of biomass-derived furanic compounds with hydrogen.ACS Catalysis, 2013, 3(12): 2655–2668
https://doi.org/10.1021/cs400616p
15 A, Corma S, Iborra A Velty . Chemical routes for the transformation of biomass into chemicals.Chemical Reviews, 2007, 107(6): 2411–2502
https://doi.org/10.1021/cr050989d pmid: 17535020
16 R, Rao A, Dandekar R T K, Baker et al.. Properties of copper chromite catalysts in hydrogenation reactions.Journal of Catalysis, 1997, 171(2): 406–419
https://doi.org/10.1006/jcat.1997.1832
17 M, Hronec K, Fulajtarova I, Vavra et al.. Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone.Applied Catalysis B: Environmental, 2016, 181: 210–219
https://doi.org/10.1016/j.apcatb.2015.07.046
18 L, Ruan H, Zhang M, Zhou et al.. A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures.Molecular Catalysis, 2020, 480: 110639
https://doi.org/10.1016/j.mcat.2019.110639
19 X, Chen L, Zhang B, Zhang et al.. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.Scientific Reports, 2016, 6(1): 28558
https://doi.org/10.1038/srep28558 pmid: 27328834
20 Y, Jiang J, Su Y, Yang et al.. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties.Nano Research, 2016, 9(3): 849–856
https://doi.org/10.1007/s12274-015-0964-y
21 R V, Sharma U, Das R, Sammynaiken et al.. Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol.Applied Catalysis A: General, 2013, 454: 127–136
https://doi.org/10.1016/j.apcata.2012.12.010
22 T, Song Y Yang . Metal nanoparticles supported on biomass-derived hierarchical porous heteroatom-doped carbon from bamboo shoots: design, synthesis and applications.Chemical Record, 2019, 19(7): 1283–1301
https://doi.org/10.1002/tcr.201800105 pmid: 30276956
23 L, Zhu H, Zhang N, Ma et al.. Tuning the interfaces in the ruthenium–nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance.Journal of Catalysis, 2019, 377: 299–308
https://doi.org/10.1016/j.jcat.2019.07.041
24 H, Lin Y, Zhang G, Wang et al.. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte.Frontiers of Materials Science, 2012, 6(2): 142–148
https://doi.org/10.1007/s11706-012-0162-8
25 M, Sethi U S, Shenoy S, Muthu et al.. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications.Frontiers of Materials Science, 2020, 14(2): 120–132
https://doi.org/10.1007/s11706-020-0499-3
26 K, Wu X Y, Wang L L, Guo et al.. Facile synthesis of Au embedded CuOx–CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol.Nano Research, 2020, 13(8): 2044–2055
https://doi.org/10.1007/s12274-020-2806-9
27 G S, Zhang M M, Zhu Q, Zhang et al.. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts.Green Chemistry, 2016, 18(7): 2155–2164
https://doi.org/10.1039/C5GC02528A
28 E, Ortel S, Sokolov C, Zielke et al.. Supported mesoporous and hierarchical porous Pd/TiO2 catalytic coatings with controlled particle size and pore structure.Chemistry of Materials, 2012, 24(20): 3828–3838
https://doi.org/10.1021/cm301081w
29 S, Algorabi S, Akmaz S N Koc . The investigation of hydrogenation behavior of furfural over sol-gel prepared Cu/ZrO2 catalysts.Journal of Sol-Gel Science and Technology, 2020, 96(1): 47–55
https://doi.org/10.1007/s10971-020-05352-6
30 H, Jiang H, Zhang Q, Kang et al.. Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation.Scientific Reports, 2019, 9(1): 15681
https://doi.org/10.1038/s41598-019-51979-z pmid: 31666571
31 L, Zhu H, Zhang W, Hu et al.. Nickel hydroxide–cobalt hydroxide nanoparticle supported ruthenium–nickel–cobalt islands as an efficient nanocatalyst for the hydrogenation reaction.ChemCatChem, 2018, 10(9): 1998–2002
https://doi.org/10.1002/cctc.201701847
32 S, Han W T, Chen Z T, Gao , et al.. Mechanochemical-assisted synthesis of nitrogen-doped carbon supported cobalt catalysts for efficient and selective hydrogenation of furfural. Catalysis Letters, 2022, in press
33 J, Chu L, Sun D J, Huang et al.. Hierarchical nitrogen-doped porous carbon-supported cobalt nanoparticles for promoting catalytic transfer hydrogenation of furfural.Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1327–1336
https://doi.org/10.11862/CJIC.2022.132
34 A, Koji J, Iqbal R H, Yu et al.. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals.Frontiers of Materials Science, 2011, 5(3): 311–321
https://doi.org/10.1007/s11706-011-0143-3
35 X, Han J, Lv S, Huang , et al.. Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer–Trposch synthesis. Nano Research, 2023, in press
36 K, Chen J, Yu B, Liu et al.. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst.Journal of Catalysis, 2019, 372: 163–173
https://doi.org/10.1016/j.jcat.2019.02.035
37 Y, Shi Y, Zhou Y, Lou et al.. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations.Advanced Science, 2022, 9(24): 2201520
https://doi.org/10.1002/advs.202201520 pmid: 35808964
38 I, Ro J, Resasco P Christopher . Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts.ACS Catalysis, 2018, 8(8): 7368–7387
https://doi.org/10.1021/acscatal.8b02071
39 L, Zhu H, Zhang L, Zhong et al.. RuNiCo-based nanocatalysts with different nanostructures for naphthalene selective hydrogenation.Fuel, 2018, 216: 208–217
https://doi.org/10.1016/j.fuel.2017.12.023
40 Y, Yao Z, Huang P, Xie et al.. High temperature shockwave stabilized single atoms.Nature Nanotechnology, 2019, 14(9): 851–857
https://doi.org/10.1038/s41565-019-0518-7 pmid: 31406363
41 A, Figueroba G, Kovacs A, Bruix et al.. Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria.Catalysis Science & Technology, 2016, 6(18): 6806–6813
https://doi.org/10.1039/C6CY00294C
42 F A, Westerhaus R V, Jagadeesh G, Wienhöfer et al.. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes.Nature Chemistry, 2013, 5(6): 537–543
https://doi.org/10.1038/nchem.1645 pmid: 23695637
43 A, Sakamaki H, Ogihara M, Yoshida-Hirahara et al.. Precursor accumulation on nanocarbons for the synthesis of LaCoO3 nanoparticles as electrocatalysts for oxygen evolution reaction.RSC Advances, 2021, 11(33): 20313–20321
https://doi.org/10.1039/D1RA03762E pmid: 35479911
44 B, Wang C, Tang H F, Wang et al.. A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution.Advanced Materials, 2019, 31(4): 1805658
https://doi.org/10.1002/adma.201805658 pmid: 30515883
45 A, Azor M L, Ruiz-Gonzalez F, Gonell et al.. Nickel-doped sodium cobaltite 2D nanomaterials: synthesis and electrocatalytic properties.Chemistry of Materials, 2018, 30(15): 4986–4994
https://doi.org/10.1021/acs.chemmater.8b01146
46 Z, Xu Q, Long Y, Deng et al.. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires.Applied Surface Science, 2018, 441: 955–964
https://doi.org/10.1016/j.apsusc.2018.02.098
47 X, Chen L, Zhang B, Zhang et al.. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.Scientific Reports, 2016, 6(1): 28558
https://doi.org/10.1038/srep28558 pmid: 27328834
48 X, Liu B, Zhang B, Fei et al.. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.Faraday Discussions, 2017, 202: 79–98
https://doi.org/10.1039/C7FD00041C pmid: 28650491
49 G, Ji Y, Duan S, Zhang et al.. Selective semihydrogenation of alkynes catalyzed by Pd nanoparticles immobilized on heteroatom-doped hierarchical porous carbon derived from bamboo shoots.ChemSusChem, 2017, 10(17): 3427–3434
https://doi.org/10.1002/cssc.201701127 pmid: 28762664
50 T, Song Y, Duan X, Chen et al.. Switchable access to amines and imines from reductive coupling of nitroarenes with alcohols catalyzed by biomass-derived cobalt nanoparticles.Catalysts, 2019, 9(2): 116
https://doi.org/10.3390/catal9020116
51 T, Song P, Ren Y, Duan et al.. Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes.Green Chemistry, 2018, 20(20): 4629–4637
https://doi.org/10.1039/C8GC01374H
52 Q, Li X, Chen Y Yang . Biomass-derived nitrogen-doped porous carbon for highly efficient ambient electro-synthesis of NH3.Catalysts, 2020, 10(3): 353
https://doi.org/10.3390/catal10030353
53 S, Zhou H Qi . A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co3O4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation.Nanoscale, 2020, 12(33): 17373–17384
https://doi.org/10.1039/D0NR04431H pmid: 32789386
54 S I, Tsyganova A N, Mel’nikov I V, Korol’kova et al.. Synthesis of porous carbon materials from birch sawdust modified with ZnCl2.Russian Journal of Applied Chemistry, 2007, 80(6): 920–923
https://doi.org/10.1134/S1070427207060134
55 X, Zhao R, Long D, Liu et al.. Pd–Ag alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 9390–9394
https://doi.org/10.1039/C5TA00777A
56 Z, Chen J, Chen Y Li . Metal-organic-framework-based catalysts for hydrogenation reactions.Chinese Journal of Catalysis, 2017, 38(7): 1108–1126
https://doi.org/10.1016/S1872-2067(17)62852-3
57 Y, Ke W, Hu H, Fang et al.. Preparation, heat-treatment and oxygen reduction performance of porous carbon with high nitrogen content.Journal of Wuhan Institute of Technology, 2021, 43(6): 626–631
https://doi.org/10.19843/j.cnki.CN42-1779/TQ.202011019
58 D, Liu X, Chen G, Xu et al.. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water.Scientific Reports, 2016, 6(1): 21365
https://doi.org/10.1038/srep21365 pmid: 26912370
59 X, Wang Y, Tang P, Shi et al.. Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries.Chemical Engineering Journal, 2018, 334: 1642–1649
https://doi.org/10.1016/j.cej.2017.11.155
60 X C, Guo B, Yu Z Z, Wang et al.. Selective hydrogenation of furfural to furfuryl alcohol over Cu/CeCoOx in aqueous phase.Molecular Catalysis, 2022, 529: 112553
https://doi.org/10.1016/j.mcat.2022.112553
[1] FMS-23645-OF-Zl_suppl_1 Download
[1] Junhai Wang, Jiandong Zheng, Liping Gao, Qingshan Dai, Sang Woo Joo, Jiarui Huang. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage[J]. Front. Mater. Sci., 2023, 17(3): 230654-.
[2] Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries[J]. Front. Mater. Sci., 2023, 17(3): 230651-.
[3] Liangshuo LI, Lin QIN, Xin FAN, Xinyu LI. Chestnut shell-like N-doped carbon coated NiCoP hollow microspheres for hybrid supercapacitors with excellent electrochemical performance[J]. Front. Mater. Sci., 2022, 16(1): 220588-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed