Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (4) : 368-378    https://doi.org/10.1007/s11706-018-0439-7
RESEARCH ARTICLE
Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency
Infant RAJ, Daniel KIGEN, Wang YANG, Fan YANG, Yongfeng LI()
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
 Download: PDF(590 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The counter electrode (CE) prominence in dye-sensitized solar cells (DSSCs) is undisputed with research geared towards replacement of Pt with viable substitutes with exceptional conductivity and catalytic activity. Herein, we report the replaceable CE with better performance than that of Pt-based electrode. The chemistry between the graphene oxide and ice templates leads to cellular formation of reduced graphene oxide that achieves greater conductivity to the CE. The simultaneous growth of active edge-oriented MoS2 on the CE through CVD possesses high reflectivity. High reflective MoS2 trends to increase the electroactivity by absorbing more photons from the source to dye molecules. Thus, the synergistic effect of two materials was found to showcase better photovoltaic performance of 7.6% against 7.3% for traditional platinum CE.

Keywords dye-sensitized solar cell      graphene oxide      molybdenum disulfide      counter electrode     
Corresponding Author(s): Yongfeng LI   
Online First Date: 16 November 2018    Issue Date: 10 December 2018
 Cite this article:   
Infant RAJ,Daniel KIGEN,Wang YANG, et al. Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency[J]. Front. Mater. Sci., 2018, 12(4): 368-378.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0439-7
https://academic.hep.com.cn/foms/EN/Y2018/V12/I4/368
Fig.1  Schematic procedure for the synthesis of edge-oriented MoS2 on rGO substrate.
Fig.2  SEM images of (a) rGO, (b) MoS2 films, and (c) MoS2/rGO hybrid structure.
Fig.3  TEM images of (a) MoS2 and (b) MoS2/rGO, and (c) corresponding SAED pattern of MoS2/rGO.
Fig.4  High resolution XPS spectra: (a) complete survey for MoS2/rGO hybrid, MoS2, rGO and GO; (b) Mo 3d spectra of MoS2/rGO; (c) S 2p spectra of MoS2/rGO.
Fig.5  High resolution XPS C1 spectra of (a) MoS2/rGO hybrid, (b) rGO, and (c) GO.
Fig.6  Raman spectra of (a) MoS2, (b) rGO, and (c) MoS2/rGO.
Fig.7  (a) CV plots, (b) impedance spectra, and (c) IV curves for Pt, MoS2, MoS2/rGO and rGO. (d) PV efficiency performance for 20 d.
CE Upp/V Rct Rs
Pt 0.285 5.36 6.7
MoS2 0.257 3.10 9.5
rGO 0.353 3.60 4.3
MoS2/rGO 0.252 2.50 3.5
Tab.1  Electrochemical parameters for various CEs
CE Jsc/(mA·cm2) Uoc/V FF η/%
Pt 14.6 0.712 0.700 7.28±0.10
MoS2 15.2 0.707 0.697 7.50±0.05
rGO 11.8 0.644 0.446 3.39±0.02
MoS2/rGO 15.7 0.689 0.710 7.68±0.03
Tab.2  Photovoltaic parameters of DSSCs using different CEs
Synthesis route η/% Ref.
Pt CE Hybrid CE
Drop casting 8.25 7.82 [S1]
Hydrothermal 6.38 6.04 [S2]
Hydrothermal 6.41 6.07 [S3]
Electrophoretic 7.46 6.82 [S4]
CVD 7.28 7.68 this work
  Table S1 Comparison of efficiency of DSSCs for various synthesis routes
Temperature/°C Content/% Ratio of n(C)/n(O)
Carbon Oxygen
200 44 55 0.8
300 58 41 1.4
400 66 33 2.0
500 80 19 4.2
600 89 15 5.9
  Table S2 Content ratio n(C)/n(O) analyses of graphene oxides on CVD annealing
  Fig. S1 SEM images of rGO on FTO prepared at (a) 1 mg/mL, (b) 3 mg/mL, and (c) 5 mg/mL.
  Fig. S2 SEM images of rGO on FTO prepared at (a) 200°C, (b) 300°C, (c) 400°C, (d) 500°C and (e) 600°C.
  Fig. S3 XPS spectrum comparison of the prepared MoS2/rGO hybrid and MoS2 CEs for (a) Mo 3d and (b) S 2p.
  Fig. S4 Raman spectra of rGO synthesized at various on FTO surface at various temperatures.
  Fig. S5 Nyquist plots of rGO CEs prepared at various (a) concentrations and (b) temperatures. (c) CV plots of CEs prepared at various temperatures.
1 O'Regan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–739
2 Gong F, Wang H, Xu X, et al.. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(26): 10953–10958
https://doi.org/10.1021/ja303034w pmid: 22713119
3 Kim S K, Son M K, Kim J K, et al.. Effect of acetic acid in TiCl4 post-treatment on nanoporous TiO2 electrode in dye-sensitized solar cell. Japanese Journal of Applied Physics, 2012, 51(9): 09MA05 doi:10.1143/JJAP.51.09MA05
4 Gratzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145–153 doi:10.1016/S1389-5567(03)00026-1
5 Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005, 44(20): 6841–6851
https://doi.org/10.1021/ic0508371 pmid: 16180840
6 Fan M S, Lee C P, Li C T, et al.. Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells. Electrochimica Acta, 2016, 211: 164–172
https://doi.org/10.1016/j.electacta.2016.06.047
7 Wu H, Lv Z, Chu Z, et al.. Graphite and platinum’s catalytic selectivity for disulfide/thiolate (T2/T−) and triiodide/iodide (I3−/I−). Journal of Materials Chemistry, 2011, 21(38): 14815–14820
https://doi.org/10.1039/c1jm11864a
8 Tian H, Gabrielsson E, Yu Z, et al.. A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes. Chemical Communications, 2011, 47(36): 10124–10126
https://doi.org/10.1039/c1cc13723a pmid: 21826364
9 Zhang D W, Li X D, Li H B, et al.. Graphene-based counter electrode for dye-sensitized solar cells. Carbon, 2011, 49(15): 5382–5388
https://doi.org/10.1016/j.carbon.2011.08.005
10 Wang G Q, Wang D L, Kuang S, et al.. Research progress on transition metal compound used as highly efficient counter electrode of dye-sensitized solar cells. Journal of Inorganic Materials, 2013, 28(9): 907–915 (in Chinese)
https://doi.org/10.3724/SP.J.1077.2013.12780
11 Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040 pmid: 26407037
12 Huo J, Zheng M, Tu Y, et al.. A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2015, 159: 166–173
https://doi.org/10.1016/j.electacta.2015.01.214
13 Bai Y, Zong X, Yu H, et al.. Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dye-sensitized solar cells. Chemistry, 2014, 20(28): 8670–8676
https://doi.org/10.1002/chem.201402657 pmid: 24924927
14 Sun X, Dou J, Xie F, et al.. One-step preparation of mirror-like NiS nanosheets on ITO for the efficient counter electrode of dye-sensitized solar cells. Chemical Communications, 2014, 50(69): 9869–9871
https://doi.org/10.1039/C4CC03798G pmid: 25025947
15 Wu M, Lin X, Wang Y, et al.. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(7): 3419–3428
https://doi.org/10.1021/ja209657v pmid: 22280185
16 Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534
https://doi.org/10.1126/science.1158877 pmid: 19541989
17 Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
18 Bonaccorso F, Sun Z, Hasan T, et al.. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
19 Julkapli N M, Bagheri S. Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 2015, 40(2): 948–979
https://doi.org/10.1016/j.ijhydene.2014.10.129
20 Xu X, Huang D, Cao K, et al.. Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Scientific Reports, 2013, 3: 1489 doi:10.1038/srep01489
21 RozadaR, Paredes J I, Villar-Rodil S, et al.. Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Research, 2013, 6(3): 216–233 doi:10.1007/s12274-013-0298-6 
22 Pei S, Cheng H M. The reduction of graphene oxide. Carbon, 2012, 50(9): 3210–3228
https://doi.org/10.1016/j.carbon.2011.11.010
23 Cheng M, Yang R, Zhang L, et al.. Restoration of graphene from graphene oxide by defect repair. Carbon, 2012, 50(7): 2581–2587
https://doi.org/10.1016/j.carbon.2012.02.016
24 Balendhran S, Walia S, Nili H, et al.. Two dimensional molybdenum trioxide and dichalcogenides. Advanced Functional Materials, 2013, 23(32): 3952–3970
https://doi.org/10.1002/adfm.201300125
25 Lopez-Sanchez O, Lembke D, Kayci M, et al.. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8(7): 497–501
https://doi.org/10.1038/nnano.2013.100 pmid: 23748194
26 SI R, Xu X, Yang W, et al.. Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620
https://doi.org/10.1016/j.electacta.2016.07.059
27 Chen Z, Forman A J, Jaramillo T F. Bridging the gap between bulk and nanostructured photoelectrodes: the impact of surface states on the electrocatalytic and photoelectrochemical properties of MoS2. The Journal of Physical Chemistry C, 2013, 117(19): 9713–9722
https://doi.org/10.1021/jp311375k
28 Fan M S, Lee C P, Li C T, et al.. Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells. Electrochimica Acta, 2016, 211: 164–172
https://doi.org/10.1016/j.electacta.2016.06.047
29 Liu C J, Tai S Y, Chou S W, et al.. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(39): 21057–21064 doi:10.1039/C2JM33679K
30 Lin J Y, Yue G, Tai S Y, et al.. Hydrothermal synthesis of graphene flake embedded nanosheet-like molybdenum sulfide hybrids as counter electrode catalysts for dye-sensitized solar cells. Materials Chemistry and Physics, 2013, 143(1): 53–59
https://doi.org/10.1016/j.matchemphys.2013.08.010
31 Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80: 1339
32 Liang Y, Wang H, Sanchez Casalongue H, et al.. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 2010, 3(10): 701–705
https://doi.org/10.1007/s12274-010-0033-5
33 Li X L, Ge J P, Li Y D. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chemistry, 2004, 10(23): 6163–6171
https://doi.org/10.1002/chem.200400451 pmid: 15515074
34 Wang Z L, Xu D, Huang Y, et al.. Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chemical Communications, 2012, 48(7): 976–978
https://doi.org/10.1039/C2CC16239C pmid: 22159368
35 Choi H, Kim H, Hwang S, et al.. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. Journal of Materials Chemistry, 2011, 21(21): 7548–7551
https://doi.org/10.1039/c1jm11145k
36 Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008, 10(3): 155–169
https://doi.org/10.1002/adem.200700270
37 Diez-Betriu X, Alvarez-Garcia S, Botas C, et al.. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2013, 1(41): 6905–6912
https://doi.org/10.1039/c3tc31124d
38 Deokar G, Vignaud D, Arenal R, et al.. Synthesis and characterization of MoS2 nanosheets. Nanotechnology, 2016, 27(7): 075604
https://doi.org/10.1088/0957-4484/27/7/075604 pmid: 26789493
39 Lee J E, Jung J, Ko T Y, et al.. Catalytic synergy effect of MoS2/reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction. RSC Advances, 2017, 7(9): 5480–5487
https://doi.org/10.1039/C6RA26149C
40 Zheng X, Xu J, Yan K, et al.. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chemistry of Materials, 2014, 26(7): 2344–2353
https://doi.org/10.1021/cm500347r
[1] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[2] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[3] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[4] Xueyang LIU,Jian FANG,Yong LIU,Tong LIN. Progress in nanostructured photoanodes for dye-sensitized solar cells[J]. Front. Mater. Sci., 2016, 10(3): 225-237.
[5] Ming LI,Pan XIONG,Maosong MO,Yan CHENG,Yufeng ZHENG. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications[J]. Front. Mater. Sci., 2016, 10(3): 270-280.
[6] Zhi-Qin YAN,Wei ZHANG. The development of graphene-based devices for cell biology research[J]. Front. Mater. Sci., 2014, 8(2): 107-122.
[7] Jing CAO, Hua-Jie YIN, Rui SONG. Circular dichroism of graphene oxide: the chiral structure model[J]. Front Mater Sci, 2013, 7(1): 83-90.
[8] Jing SUN, Ling-Hao HE, Qiao-Ling ZHAO, Li-Fang CAI, Rui SONG, Yong-Mei HAO, Zhi MA, Wei HUANG. A simple and controllable nanostructure comprising non-conductive poly(vinylidene fluoride) and graphene nanosheets for supercapacitor[J]. Front Mater Sci, 2012, 6(2): 149-159.
[9] Ding REN, Yu ZOU, Chang-Yong ZHAN, Ning-Kang HUANG. Behaviors of different dispersers on morphologies of porous TiO2 films[J]. Front Mater Sci Chin, 2010, 4(4): 394-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed