Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2013, Vol. 8 Issue (4) : 467-471    https://doi.org/10.1007/s11467-013-0342-8
RESEARCH ARTICLE
DNA condensation and size effects of DNA condensation agent
Yan-Hui Liu1,2(), Chong-Ming Jiang3, Xin-Miao Guo1, Yan-Lin Tang1, Lin Hu1()
1. College of Science, Guizhou University, Guiyang 550025, China; 2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; 3. Department of Physics, Sun Yat-Sen University, Guangzhou 510275, China
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.

Keywords DNA condensation      Monte Carlo simulation      size effects of condensation agent     
Corresponding Author(s): Liu Yan-Hui,Email:ionazati@itp.ac.cn; Hu Lin,Email:lhu@gzu.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Yan-Hui Liu,Lin Hu,Chong-Ming Jiang, et al. DNA condensation and size effects of DNA condensation agent[J]. Front. Phys. , 2013, 8(4): 467-471.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0342-8
https://academic.hep.com.cn/fop/EN/Y2013/V8/I4/467
1 N. V. Hud and I. D. Vilfan, Toroidal DNA condensates: Unraveling the fine structure and the role of nucleation in determining size, Annu. Rev. Biophys. Biomol. Struct. , 2005, 34: 295
doi: 10.1146/annurev.biophys.34.040204.144500 pmid:15869392
2 V. A. Bloomfield, DNA condensation,Curr. Opin. Struct. Biol. , 1996, 6(3): 334
doi: 10.1016/S0959-440X(96)80052-2
3 A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids, Biophys. J. , 2011, 100: 2209
doi: 10.1016/j.bpj.2011.03.012 pmid:21539789
4 Z. Y. Ou and M. Muthukumar, Langevin dynamics of semi-flexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution, J. Chem. Phys. , 2005, 123(7): 074905
doi: 10.1063/1.1940054 pmid:16229618
5 W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, V. A. Parsegian, and W. J. Johnson, DNA-inspired electrostatics, Phys. Today , 2000, 53: 38
doi: 10.1063/1.1325230
6 B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Dynamical intermediates in the collapse of semiflexible polymers in poor solvents, Europhys. Lett. , 2000, 51: 279
doi: 10.1209/epl/i2000-00349-x
7 W. B. Fu, X. L. Wang, X. H. Zhang, S. Y. Ran, J. Yan, and M. Li, Compaction dynamics of single DNA molecules under tension, J. Am. Chem. Soc. , 2006, 128(47): 15040
doi: 10.1021/ja064305a pmid:17117826
8 F. Oosawa, Interaction between parallel rodlike macroions, Biopolymers , 1968, 6(11): 1633
doi: 10.1002/bip.1968.360061108
9 G. S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions (i): Colligative properties, J. Chem. Phys. , 1969, 51(3): 924
doi: 10.1063/1.1672157
10 B. Y. Ha and A. J. Liu, Counterion-mediated attraction between two like-charged rods, Phys. Rev. Lett. , 1997, 79(7): 1289
doi: 10.1103/PhysRevLett.79.1289
11 I. Rouzina and V. A. Bloomfield, Macroion attraction due to electrostatic correlation between screening counterions (1): Mobile surface-adsorbed ions and diffuse ion cloud, J. Phys. Chem. , 1996, 100(23): 9977
doi: 10.1021/jp960458g
12 Y. Levin, J. J. Arenzon, and J. F. Stilck, The nature of attraction between like-charged rods, Phys. Rev. Lett. , 1999, 83(13): 2680
doi: 10.1103/PhysRevLett.83.2680
13 A. A. Kornyshev and S. Leikin, Electrostatic zipper motif for DNA aggregation, Phys. Rev. Lett. , 1999, 82(20): 4138
doi: 10.1103/PhysRevLett.82.4138
14 K. Besteman, S. Hage, N. H. Dekker, and S. G. Lemay, Role of tension and twist in single-molecule DNA condensation, Phys. Rev. Lett. , 2007, 98(5): 058103
doi: 10.1103/PhysRevLett.98.058103 pmid:17358905
15 K. Besteman, K. Van Eijk, and S. G. Lemay, Charge inversion accompanies DNA condensation by multivalent ions, Nat. Phys. , 2007, 3(9): 641
doi: 10.1038/nphys697
16 F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante, Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers, Phys. Rev. Lett. , 2006, 96(11): 118301
doi: 10.1103/PhysRevLett.96.118301 pmid:16605879
17 W. K. Kim and W. Sung, Charge density coordination and dynamics in a rodlike polyelectrolyte, Phys. Rev. E , 2008, 78(2): 021904
doi: 10.1103/PhysRevE.78.021904 pmid:18850862
18 L. Dai, Y. G. Mu, L. Nordenski?ld, and J. R. van der Maarel, Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules, Phys. Rev. Lett. , 2008, 100(11): 118301
doi: 10.1103/PhysRevLett.100.118301 pmid:18517834
19 F. Oosawa, Polyelectrolyte, New York: Marcel Dekker, INC, 1971
20 J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge: Cambridge University Press, 2003
doi: 10.1017/CBO9780511606533
21 Y. H. Liu and L. Hu, Monte Carlo simulation on topology of DNA minicircles, Chinese J. Comput. Phys. , 2009, 26: 152 (in Chinese)
22 J. Marko, Introduction to single-DNA micromechanics in multiple aspects of DNA and RNA from biophysics to bioinformatics Les Houches Session LXXXII, Elsevier , 2005
23 L. S. Lerman, L. S. Wilkerson, J. H. Venable, Jr, and B. H. Robinson, DNA packing in single crystals inferred from freeze-fracture-etch replicas, J. Mol. Biol. , 1976, 108(2): 271
doi: 10.1016/S0022-2836(76)80121-0
24 J. A. Schellman and N. Parthasarathy, X-ray diffraction studies on cation-collapsed DNA, J. Mol. Biol. , 1984, 175: 313
doi: 10.1016/0022-2836(84)90351-6
25 H. Deng and V. A. Bloomfield, Structural effects of cobaltamine compounds on DNA condensation, Biophys. J. , 1999, 77(3): 1556
doi: 10.1016/S0006-3495(99)77003-7
26 G. E. Plum, P. G. Arscott, and V. A. Bloomfield, Condensation of DNA by trivalent cations (2): Effects of cation structure, Biopolymers , 1990, 30(5–6): 631
doi: 10.1002/bip.360300515 pmid:2265234
27 J. Widom and R. L. Baldwin, Monomolecular condensation of lambda-DNA induced by cobalt hexamine, Biopolymers , 1983, 22(6): 1595
doi: 10.1002/bip.360220612 pmid:6223670
28 J. A. Benbasat, Condensation of bacteriophage phi W14 DNA of varying charge densities by trivalent counterions, Biochemistry , 1984, 23(16): 3609
doi: 10.1021/bi00311a007 pmid:6477887
29 A. M. Carnerup, M. L. Ainalem, V. Alfredsson, and T. Nylander, Watching DNA condensation induced by poly (amido amine) dendrimer with time-resolved cryo-TEM, Langmuir , 2009, 25(21): 12466
doi: 10.1021/la903068v pmid:19856988
30 G. S. Manning, The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force, Biophys. J. , 2006, 91(10): 3607
doi: 10.1529/biophysj.106.089029 pmid:16935960
31 S. Geggier, A. Kotlyar, and A. Vologodskii, Temperature dependence of DNA persistence length, Nucleic Acids Res. , 2011, 39(4): 1427
doi: 10.1093/nar/gkq932 pmid:20952402
[1] Meng-Bo Luo,Shuang Zhang,Fan Wu,Li-Zhen Sun. Translocation time of a polymer chain through an energy gradient nanopore[J]. Front. Phys. , 2017, 12(3): 128301-.
[2] Xiao-Yan Yao,Li-Juan Yang. Multiple conical spin order in spinel structure stabilized by magnetic anisotropy[J]. Front. Phys. , 2017, 12(3): 127501-.
[3] WANG Rui, DENG Hui-qiu, YUAN Xiao-jian, HU Wang-yu. Monte Carlo simulation of hydrogen adsorption on Ni surfaces[J]. Front. Phys. , 2007, 2(2): 199-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed