|
|
DNA condensation and size effects of DNA condensation agent |
Yan-Hui Liu1,2( ), Chong-Ming Jiang3, Xin-Miao Guo1, Yan-Lin Tang1, Lin Hu1( ) |
1. College of Science, Guizhou University, Guiyang 550025, China; 2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; 3. Department of Physics, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.
|
Keywords
DNA condensation
Monte Carlo simulation
size effects of condensation agent
|
Corresponding Author(s):
Liu Yan-Hui,Email:ionazati@itp.ac.cn; Hu Lin,Email:lhu@gzu.edu.cn
|
Issue Date: 01 August 2013
|
|
1 |
N. V. Hud and I. D. Vilfan, Toroidal DNA condensates: Unraveling the fine structure and the role of nucleation in determining size, Annu. Rev. Biophys. Biomol. Struct. , 2005, 34: 295 doi: 10.1146/annurev.biophys.34.040204.144500 pmid:15869392
|
2 |
V. A. Bloomfield, DNA condensation,Curr. Opin. Struct. Biol. , 1996, 6(3): 334 doi: 10.1016/S0959-440X(96)80052-2
|
3 |
A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids, Biophys. J. , 2011, 100: 2209 doi: 10.1016/j.bpj.2011.03.012 pmid:21539789
|
4 |
Z. Y. Ou and M. Muthukumar, Langevin dynamics of semi-flexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution, J. Chem. Phys. , 2005, 123(7): 074905 doi: 10.1063/1.1940054 pmid:16229618
|
5 |
W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, V. A. Parsegian, and W. J. Johnson, DNA-inspired electrostatics, Phys. Today , 2000, 53: 38 doi: 10.1063/1.1325230
|
6 |
B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Dynamical intermediates in the collapse of semiflexible polymers in poor solvents, Europhys. Lett. , 2000, 51: 279 doi: 10.1209/epl/i2000-00349-x
|
7 |
W. B. Fu, X. L. Wang, X. H. Zhang, S. Y. Ran, J. Yan, and M. Li, Compaction dynamics of single DNA molecules under tension, J. Am. Chem. Soc. , 2006, 128(47): 15040 doi: 10.1021/ja064305a pmid:17117826
|
8 |
F. Oosawa, Interaction between parallel rodlike macroions, Biopolymers , 1968, 6(11): 1633 doi: 10.1002/bip.1968.360061108
|
9 |
G. S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions (i): Colligative properties, J. Chem. Phys. , 1969, 51(3): 924 doi: 10.1063/1.1672157
|
10 |
B. Y. Ha and A. J. Liu, Counterion-mediated attraction between two like-charged rods, Phys. Rev. Lett. , 1997, 79(7): 1289 doi: 10.1103/PhysRevLett.79.1289
|
11 |
I. Rouzina and V. A. Bloomfield, Macroion attraction due to electrostatic correlation between screening counterions (1): Mobile surface-adsorbed ions and diffuse ion cloud, J. Phys. Chem. , 1996, 100(23): 9977 doi: 10.1021/jp960458g
|
12 |
Y. Levin, J. J. Arenzon, and J. F. Stilck, The nature of attraction between like-charged rods, Phys. Rev. Lett. , 1999, 83(13): 2680 doi: 10.1103/PhysRevLett.83.2680
|
13 |
A. A. Kornyshev and S. Leikin, Electrostatic zipper motif for DNA aggregation, Phys. Rev. Lett. , 1999, 82(20): 4138 doi: 10.1103/PhysRevLett.82.4138
|
14 |
K. Besteman, S. Hage, N. H. Dekker, and S. G. Lemay, Role of tension and twist in single-molecule DNA condensation, Phys. Rev. Lett. , 2007, 98(5): 058103 doi: 10.1103/PhysRevLett.98.058103 pmid:17358905
|
15 |
K. Besteman, K. Van Eijk, and S. G. Lemay, Charge inversion accompanies DNA condensation by multivalent ions, Nat. Phys. , 2007, 3(9): 641 doi: 10.1038/nphys697
|
16 |
F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante, Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers, Phys. Rev. Lett. , 2006, 96(11): 118301 doi: 10.1103/PhysRevLett.96.118301 pmid:16605879
|
17 |
W. K. Kim and W. Sung, Charge density coordination and dynamics in a rodlike polyelectrolyte, Phys. Rev. E , 2008, 78(2): 021904 doi: 10.1103/PhysRevE.78.021904 pmid:18850862
|
18 |
L. Dai, Y. G. Mu, L. Nordenski?ld, and J. R. van der Maarel, Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules, Phys. Rev. Lett. , 2008, 100(11): 118301 doi: 10.1103/PhysRevLett.100.118301 pmid:18517834
|
19 |
F. Oosawa, Polyelectrolyte, New York: Marcel Dekker, INC, 1971
|
20 |
J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge: Cambridge University Press, 2003 doi: 10.1017/CBO9780511606533
|
21 |
Y. H. Liu and L. Hu, Monte Carlo simulation on topology of DNA minicircles, Chinese J. Comput. Phys. , 2009, 26: 152 (in Chinese)
|
22 |
J. Marko, Introduction to single-DNA micromechanics in multiple aspects of DNA and RNA from biophysics to bioinformatics Les Houches Session LXXXII, Elsevier , 2005
|
23 |
L. S. Lerman, L. S. Wilkerson, J. H. Venable, Jr, and B. H. Robinson, DNA packing in single crystals inferred from freeze-fracture-etch replicas, J. Mol. Biol. , 1976, 108(2): 271 doi: 10.1016/S0022-2836(76)80121-0
|
24 |
J. A. Schellman and N. Parthasarathy, X-ray diffraction studies on cation-collapsed DNA, J. Mol. Biol. , 1984, 175: 313 doi: 10.1016/0022-2836(84)90351-6
|
25 |
H. Deng and V. A. Bloomfield, Structural effects of cobaltamine compounds on DNA condensation, Biophys. J. , 1999, 77(3): 1556 doi: 10.1016/S0006-3495(99)77003-7
|
26 |
G. E. Plum, P. G. Arscott, and V. A. Bloomfield, Condensation of DNA by trivalent cations (2): Effects of cation structure, Biopolymers , 1990, 30(5–6): 631 doi: 10.1002/bip.360300515 pmid:2265234
|
27 |
J. Widom and R. L. Baldwin, Monomolecular condensation of lambda-DNA induced by cobalt hexamine, Biopolymers , 1983, 22(6): 1595 doi: 10.1002/bip.360220612 pmid:6223670
|
28 |
J. A. Benbasat, Condensation of bacteriophage phi W14 DNA of varying charge densities by trivalent counterions, Biochemistry , 1984, 23(16): 3609 doi: 10.1021/bi00311a007 pmid:6477887
|
29 |
A. M. Carnerup, M. L. Ainalem, V. Alfredsson, and T. Nylander, Watching DNA condensation induced by poly (amido amine) dendrimer with time-resolved cryo-TEM, Langmuir , 2009, 25(21): 12466 doi: 10.1021/la903068v pmid:19856988
|
30 |
G. S. Manning, The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force, Biophys. J. , 2006, 91(10): 3607 doi: 10.1529/biophysj.106.089029 pmid:16935960
|
31 |
S. Geggier, A. Kotlyar, and A. Vologodskii, Temperature dependence of DNA persistence length, Nucleic Acids Res. , 2011, 39(4): 1427 doi: 10.1093/nar/gkq932 pmid:20952402
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|