Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (2) : 170-193    https://doi.org/10.1007/s11467-013-0360-6
REVIEW ARTICLE
Single photon sources with single semiconductor quantum dots
Guang-Cun Shan1,2(), Zhang-Qi Yin3, Chan Hung Shek1, Wei Huang4()
1. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China; 2. The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA; 3. The Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, Beijing 100084, China; 4. Singapore-Jiangsu Joint Research Center for Organic/Bio-electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China
 Download: PDF(777 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

Keywords single-photon source      quantum dot (QD)      quantum optics      photon correlation     
Corresponding Author(s): Shan Guang-Cun,Email:gshan2-c@my.cityu.edu.hk; Huang Wei,Email:wei-huang@njut.edu.cn   
Issue Date: 01 April 2014
 Cite this article:   
Guang-Cun Shan,Zhang-Qi Yin,Chan Hung Shek, et al. Single photon sources with single semiconductor quantum dots[J]. Front. Phys. , 2014, 9(2): 170-193.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0360-6
https://academic.hep.com.cn/fop/EN/Y2014/V9/I2/170
1 J. M. Gérard and B. Gayral, InAs quantum dots: Artificial atoms for solid-state cavity-quantum electrodynamics, Physica E , 2001, 9(1): 131
doi: 10.1016/S1386-9477(00)00187-9
2 M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, Efficient source of single photons: A single quantum dot in a micropost microcavity, Phys. Rev. Lett. , 2002, 89(23): 233602
doi: 10.1103/PhysRevLett.89.233602
3 T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature , 2004, 432(7014): 200
doi: 10.1038/nature03119
4 E. Peter, P. Senellart, D. Martrou, A. Lema?tre, J. Hours, J. M. Gérard, and J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett. , 2005, 95(6): 067401
doi: 10.1103/PhysRevLett.95.067401
5 M. Pelton and Y. Yamamoto, Ultralow threshold laser using a single quantum dot and a microsphere cavity, Phys. Rev. A , 1999, 59(3): 2418
doi: 10.1103/PhysRevA.59.2418
6 E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature , 2001, 409(6816): 46
doi: 10.1038/35051009
7 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. , 2002, 74(1): 145
doi: 10.1103/RevModPhys.74.145
8 N. Gisin and R. Thew, Quantum communication, Nat. Photonics , 2007, 1(3): 165
doi: 10.1038/nphoton.2007.22
9 B. Lounis and M. Orrit, Single-photon sources, Rep. Prog. Phys. , 2005, 68(5): 1129
doi: 10.1088/0034-4885/68/5/R04
10 A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryp-tography, Appl. Phys. Lett. , 1997, 70(7): 793
doi: 10.1063/1.118224
11 G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. , 2000, 85(6): 1330
doi: 10.1103/PhysRevLett.85.1330
12 A. Kuhn, M. Hennrich, and G. Rempe, Deterministic singlephoton source for distributed quantum networking, Phys. Rev. Lett. , 2002, 89(6): 067901
doi: 10.1103/PhysRevLett.89.067901
13 M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature , 2004, 431(7012): 1075
doi: 10.1038/nature02961
14 B. Lounis and W. E. Moerner, Single photon on demand from s single molecule at room temperature, Nature , 2000, 407(6803): 491
doi: 10.1038/35035032
15 C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable solid-state source of single photons, Phys. Rev. Lett. , 2000, 85(2): 290
doi: 10.1103/PhysRevLett.85.290
16 Y. M. He, Y. He, Y. J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C. Y. Lu, and J. W. Pan, Ondemand semiconductor single-photon source with near-unity indistinguishability, Nat. Nanotechnol. , 2013, 8(3): 213
doi: 10.1038/nnano.2012.262
17 A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Deterministic coupling of single quantum dots to single nanocavity modes, Science , 2005, 308(5725): 1158
doi: 10.1126/science.1109815
18 X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission, Phys. Rev. Lett. , 2004, 93(10): 107403
doi: 10.1103/PhysRevLett.93.107403
19 J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science , 2001, 292(5524): 2060
doi: 10.1126/science.1060810
20 L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater. , 2003, 2(6): 382
doi: 10.1038/nmat902
21 G. Shan, S. Bao, C. H. Shek, and W. Huang, Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal–DNA–dye conjugates, J. Lumin. , 2012, 132(6): 1472
doi: 10.1016/j.jlumin.2012.01.024
22 I. N. Stranski and L. Von Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz , 1939, 146: 797
23 G. C. Shan and S. Bao, Theoretical study of a quantum dot microcavity laser, Proc. SPIE , 2007, 6279(1): 627925
doi: 10.1117/12.725218
24 A. Salhi, G. Rain, L. Fortunato, V. Tasco, G. Visimberga, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Trampert, M. De Vittorio, and A. Passaseo, Enhanced performances of quantum dot lasers operating at 1.3 μm, IEEE J. Sel. Top. Quant. , 2008, 14(4): 1188
doi: 10.1109/JSTQE.2008.916182
25 G. C. Shan, M. J. Hu, C. H. Shek, and W. Huang, Verticalexternal-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron. , 2012, 5(2): 157
doi: 10.1007/s12200-012-0237-2
26 T. Akiyama, M. Sugawara, and Y. Arakawa, Quantum-dot semiconductor optical amplifiers, Proc. IEEE , 2007, 95(9): 1757
doi: 10.1109/JPROC.2007.900899
27 S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, and Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nat. Mater. , 2006, 5(11): 887
doi: 10.1038/nmat1763
28 P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature, Nature , 2000, 406(6799): 968
doi: 10.1038/35023100
29 M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, and R. Bratschitsch, Colloidal quantum dots in all-dielectric high-Qpillar microcavities, Nano Lett. , 2007, 7(9): 2897
doi: 10.1021/nl071812x
30 T. Takagahara, Theory of exciton dephasing in semiconductor quantum dots, Phys. Rev. B , 1999, 60(19): 2638
doi: 10.1103/PhysRevB.60.2638
31 C. F?rstner, C. Weber, J. Danckwerts, and A. Knorr, Phonon-assisted damping of Rabi oscillations insemiconductor quantum dots, Phys. Rev. Lett. , 2003, 91(12): 127401
doi: 10.1103/PhysRevLett.91.127401
32 E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. , 1946, 69(11): 681
33 E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett. , 2001, 79(18): 2865
doi: 10.1063/1.1415346
34 C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications, Weinheim: Wiley-VCH, 2010
35 M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
doi: 10.1017/CBO9780511813993
36 R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford: Oxford Science, 2000
37 M. Scholz, T. Aichele, and O. Benson, Single-Photon Generation from Single Quantum Dots, Semiconductor Nanostructures (in Series of NanoScience and Technology) , 2008: 329-349
38 A. J. Berglund, A. C. Doherty, and H. Mabuchi, Photon statistics and dynamics of fluorescence resonance energy transfer, Phys. Rev. Lett. , 2002, 89(6): 068101
doi: 10.1103/PhysRevLett.89.068101
39 A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Nonclassical emission from single colloidal nanocrystals in a microcavity: A route towards room temperature single photon sources, New J. Phys. , 2009, 11(3): 033025
doi: 10.1088/1367-2630/11/3/033025
40 P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, A quantum dot single-photon turnstile device, Science , 2000, 290(5500): 2282
doi: 10.1126/science.290.5500.2282
41 D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett. , 2003, 3(12): 1677
doi: 10.1021/nl034815s
42 C. M. Liddell, and C. J. Summers, Monodispersed ZnS dimers, trimers, and tetramers for lower symmetry photonic crystal lattices, Adv. Mater. , 2003, 15(20): 1715
doi: 10.1002/adma.200305283
43 Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, and W. Huang, Synthesis of CdTe nanocrystals through program process of microwave irradiation, J. Phys. Chem. B , 2006, 110(27): 13352
doi: 10.1021/jp061719h
44 C. H. Bennett and G. Brassard, Int. Conf. Computers, Systems and Signal Processing, Bangalore , 1984, 1: 175
45 F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L. Manna, R. Cingolani, E. Giacobino, A. Bramati, and M. De Vittorio, Polarized single photon emission for quantum cryptography based on colloidal nanocrystals, IEEE Proc. 11th Int. Conf. Transparent Optical Networks , 2009: 1-4
46 A. Convertino, L. Cerri, G. Leo, and S. Viticoli, Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region, J. Cryst. Growth , 2004, 261(4): 458
doi: 10.1016/j.jcrysgro.2003.09.034
47 O. G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer NanoScience and Technology), Berlin: Springer, 2007
48 B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, and B. Dubertret, Towards non-blinking colloidal quantum dots, Nat. Mater. , 2008, 7(8): 659
doi: 10.1038/nmat2222
49 V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots, Science , 2000, 287(5455): 1011
doi: 10.1126/science.287.5455.1011
50 M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature , 1996, 383(6603): 802
doi: 10.1038/383802a0
51 X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. MaccagnanoZacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, Non-blinking semiconductor nanocrystals, Nature , 2009, 459(7247): 686
doi: 10.1038/nature08072
52 S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett. , 1996, 77(18): 3873
doi: 10.1103/PhysRevLett.77.3873
53 H. P. Lu and X. S. Xie, Single-molecule spectral fluctuations at room temperature, Nature , 1997, 385(6612): 143
doi: 10.1038/385143a0
54 L. Coolen, X. Brokmann, P. Spinicelli, and J. P. Hermier, Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photoncorrelation fourier spectroscopy, Phys. Rev. Lett. , 2008, 100(2): 027403
doi: 10.1103/PhysRevLett.100.027403
55 V. D. Kulakowski, B. Bacher, R. Weigand, T. Kümmel, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Fine structure of biexciton emission in symmetric and asymmetric cdse/znse single quantum dots, Phys. Rev. Lett. , 1999, 82(8): 1780
doi: 10.1103/PhysRevLett.82.1780
56 R. D. Schaller, S. A. Crooker, D. A. Bussian, J. M. Pietryga, J. Joo, and V. I. Klimov, Revealing the exciton fine structure of PbSe nanocrystal quantum dots using optical spectroscopy in high magnetic fields, Phys. Rev. Lett. , 2010, 105(6): 067403
doi: 10.1103/PhysRevLett.105.067403
57 M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot, Phys. Rev. B , 2009, 80(15): 155326
doi: 10.1103/PhysRevB.80.155326
58 S. M. Ulrich, M. Benyoucef, P. Michler, N. Baer, P. Gartner, F. Jahnke, M. Schwab, H. Kurtze, M. Bayer, S. Farad, Z. Wasilewski, and A. Forchel, Correlated photon-pair emission from a charged single quantum dot, Phys. Rev. B , 2005, 71(23): 235328
doi: 10.1103/PhysRevB.71.235328
59 A. Mueller, E. B. Flagg, P. Bianucci, X. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity, Phys. Rev. Lett. , 2007, 99(18): 187402
doi: 10.1103/PhysRevLett.99.187402
61 N. Le Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, Cavity QED with semiconductor nanocrystals, Nano Lett. , 2006, 6(3): 557
doi: 10.1021/nl060003v
62 K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamolu, Quantum nature of a strongly coupled single quantum dot–cavity system, Nature , 2007, 445(7130): 896
doi: 10.1038/nature05586
63 Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity, Appl. Phys. Lett. , 2008, 93(18): 183114
doi: 10.1063/1.3020295
64 E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios, and E. Kapon, Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates, Nano Lett. , 2007, 7(5): 1282
doi: 10.1021/nl0702012
65 C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Hofling, and A. Forchel, Single photon emission from a site-controlled quantum dot-micropillar cavity system, Appl. Phys. Lett. , 2009, 94(11): 111111
doi: 10.1063/1.3097016
66 P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities, Appl. Phys. Lett. , 2008, 92(26): 263101
doi: 10.1063/1.2952278
67 M. Poitras, C. B. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity, Appl. Phys. Lett. , 2003, 82(23): 4032
doi: 10.1063/1.1581007
68 L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology, Appl. Phys. Lett. , 2006, 88(18): 181108
doi: 10.1063/1.2200748
69 M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission, Nano Lett. , 2001, 1(6): 309
doi: 10.1021/nl015545l
70 A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. D e Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Room temperature single-photon sources based on single colloidal nanocrystals in microcavities, Superlattices Microstruct. , 2010, 47(1): 187
doi: 10.1016/j.spmi.2009.05.004
71 F. Pisanello, A. Qualtieri, G. Lemünager, L. Martiradonna, T. Stomeo, R. Cingolani, A. Bramati, and M. De Vittorio, Single colloidal quantum dots as sources of single photons for quantum cryptography, Proc. SPIE , 2011, 7947(1): 794709
doi: 10.1117/12.880575
72 A. Qualtieri, L. Martiradonna, T. Stomeo, M. T. Todaro, R. Cingolani, and M. De Vittorio, Multicolored devices fabricated by direct lithography of colloidal nanocrystals, Microelectron. Eng. , 2009, 86(4): 1127
doi: 10.1016/j.mee.2008.11.073
73 A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett. , 2004, 4(10): 1821
doi: 10.1021/nl049216f
74 C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Phys. Rev. Lett. , 2001, 86(8): 1502
doi: 10.1103/PhysRevLett.86.1502
75 A. Malko, D. Y. Oberli, M. H. Baier, E. Pelucchi, F. Michelini, K. F. Karlson, M. A. Dupertuis, and E. Kapon, Singlephoton emission from pyramidal quantum dots: The impact of hole thermalization on photon emission statistics, Phys. Rev. B , 2005, 72(19): 195332
doi: 10.1103/PhysRevB.72.195332
76 A. Malko, M. H. Baier, K. F. Karlson, E. Pelucchi, D. Y. Oberli, and E. Kapon, Optimization of the efficiency of single-photon sources based on quantum dots under optical excitation, Appl. Phys. Lett. , 2006, 88(8): 081905
doi: 10.1063/1.2177547
77 S. Kiravittaya, M. Benyoucef, R. Zapf-Gottwick, A. Rastelli, and O. G. Schmidt, Ordered GaAs quantum dot arrays on GaAs(001): Single photon emission and fine structure splitting, Appl. Phys. Lett. , 2006, 89(23): 233102
doi: 10.1063/1.2399354
78 S. Kimura, H. Kumano, M. Endo, I. Suemune, T. Yokoi, H. Sasakura, S. Adachi, S. Muto, H. Z. Song, S. Hirose, and T. Usuki, Single-photon generation from InAlAs single quantum dot, Phys. Status Solidi (c) , 2005, 2(11): 3833
doi: 10.1002/pssc.200562027
79 M. Bommer, W. M. Schulz, R. Rosbach, M. Jetter, P. Michler, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Triggered single-photon emission in the red spectral range from optically excited InP/(Al,Ga)InP quantum dots embedded in micropillars up to 100 K, J. Appl. Phys. , 2011, 110(6): 063108
doi: 10.1063/1.3633218
80 A. Ugur, S. Kremling, F. Hatami, S. H?fling, L. Worschech, A. Forchel, and W. T. Masselink, Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots, Appl. Phys. Lett. , 2012, 100(2): 023116
doi: 10.1063/1.3676273
81 M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, On-demand single-photon source for 1.3 μm telecom fiber, Appl. Phys. Lett. , 2005, 86(20): 201111
doi: 10.1063/1.1922573
82 T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, Single-photon emission from single quantum dots in a hybrid pillar microcavity, Appl. Phys. Lett. , 2008, 92(8): 081906
doi: 10.1063/1.2840711
83 S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Boumeester, High-frequency singlephoton source with polarization control, Nat. Photonics , 2007, 1(12): 704
doi: 10.1038/nphoton.2007.227
84 J. Kim, O. Benson, H. Kan, and Y. Yamamoto, A singlephoton turnstile device, Nature , 1999, 397(6719): 500
doi: 10.1038/17295
85 A. J. Shields, Semiconductor quantum light sources, Nat. Photonics , 2007, 1(4): 215
doi: 10.1038/nphoton.2007.46
86 A. J. Bennett, D. C. Unitt, P. See, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrical control of the uncertainty in the time of single photon emission events, Phys. Rev. B , 2005, 72(3): 033316
doi: 10.1103/PhysRevB.72.033316
87 M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrically driven telecommunication wavelength single-photon source, Appl. Phys. Lett. , 2007, 90(6): 063512
doi: 10.1063/1.2472172
88 T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. H?fling, M. Kamp, and A. Forchel, Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency, Appl. Phys. Lett. , 2010, 96(1): 011107
doi: 10.1063/1.3284514
89 D. J. Ellis, A. J. Bennett, A. J. Shields, P. Atkinson, and D. A. Ritchie, Electrically addressing a single self-assembled quantum dot, Appl. Phys. Lett. , 2006, 88(13): 133509
doi: 10.1063/1.2190451
90 M. Scholz, S. Büttner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, F. Hopfer, V. A. Haisler, and D. Bimberg, Non-classical light emission from a single electrically driven quantum dot, Opt. Express , 2007, 15(15): 9107
doi: 10.1364/OE.15.009107
91 D. J . P. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz, New J. Phys. , 2008, 10(4): 043035
doi: 10.1088/1367-2630/10/4/043035
92 M. Reischle, G. J. Beirne, W. M. Schulz, M. Eichfelder, R. Rosbach, M. Jetter, and P. Michler, Electrically pumped single-photon emission in the visible spectral range up to 80 K, Opt. Express , 2008, 16(17): 12771
doi: 10.1364/OE.16.012771
93 P. Ester, L. Lackmann, S. Michaelis de Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, Single photon emission based on coherent state preparation, Appl. Phys. Lett. , 2007, 91(11): 111110
doi: 10.1063/1.2784173
94 D. Press, S. Gtzinger, S. Reitzenstein, C. Hofmann, A. Lffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime, Phys. Rev. Lett. , 2007, 98(11): 117402
doi: 10.1103/PhysRevLett.98.117402
96 R. Arians, T. Kmmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Room temperature emission from CdSe/ZnSSe/MgS single quantum dots, Appl. Phys. Lett. , 2007, 90(10): 101114
doi: 10.1063/1.2710787
97 A. Tribu, G. Sallen, T. Aichele, R. André, J. P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, A high-temperature single-photon source from nanowire quantum dots, Nano Lett. , 2008, 8(12): 4326
doi: 10.1021/nl802160z
98 A. F. Jarjour, R. A. Oliver, R. A. Taylor, Nitride-based quantum dots for single photon source applications, physica status solidi (a) , 2009, 206(11): 2510
99 O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Room temperature single photon emission from an epitaxially grown quantum dot, Appl. Phys. Lett. , 2012, 100(6): 061114
doi: 10.1063/1.3683498
100 B. S. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Qphotonic double-heterostructure nanocavity, Nat. Mater. , 2005, 4(3): 207
doi: 10.1038/nmat1320
101 W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities, Phys. Rev. A , 2011, 84(4): 043849
doi: 10.1103/PhysRevA.84.043849
102 S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. , 1987, 58(23): 2486
doi: 10.1103/PhysRevLett.58.2486
103 L. Florescu, Nonclassical light generation by a photoniccrystal one-atom laser, Phys. Rev. A , 2008, 78(2): 023827
doi: 10.1103/PhysRevA.78.023827
104 M. I. Makin, J. H. Cole, C. Tahan, L. C. L. Hollenberg, and A. D. Greentree, Quantum phase transitions in photonic cavities with two-level systems, Phys. Rev. A , 2008, 77(5): 053819
doi: 10.1103/PhysRevA.77.053819
105 S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity, Phys. Rev. Lett. , 2005, 94(3): 033903
doi: 10.1103/PhysRevLett.94.033903
106 M. G. Banaee, A. G. Pattantyus-Abraham, M. W. Mccutcheon, G. W. Rieger, and J. F. Young, Efficient coupling of photonic crystal microcavity modes to a ridge waveguide, Appl. Phys. Lett. , 2007, 90(19): 193106
doi: 10.1063/1.2737369
107 P. Yao, and S. Hughes, Controlled cavity-QED using a planar photonic crystal waveguide-cavity system, arXiv: 0904.4469v2 , 2009
108 V. S. C. Manga Rao, and S. Hughes, Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides, Opt. Lett. , 2008, 33(14): 1587
doi: 10.1364/OL.33.001587
109 R. Bose, K. Roy, T. Cai, G. S. Solomon, and E. Waks, APS March Meeting 2013, 58(1): A26.00009
110 A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity, Phys. Rev. Lett. , 2010, 104(4): 047402
doi: 10.1103/PhysRevLett.104.047402
111 E. D. Kim, K. Truex, X. Xu, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Fast spin rotations by optically controlled geometric phases in a charge-tunable inas quantum dot, Phys. Rev. Lett. , 2010, 104(16): 167401
doi: 10.1103/PhysRevLett.104.167401
112 B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vu?kovi?, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser, Nat. Photonics , 2011, 5: 297
doi: 10.1038/nphoton.2011.51
[1] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[2] J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities[J]. Front. Phys. , 2018, 13(1): 130305-.
[3] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[4] WU Min, LIAO Chang-jun, LIU Song-hao. Two Methods for Extending Quantum Key Warehouse[J]. Front. Phys. , 2006, 1(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed