|
|
Single photon sources with single semiconductor quantum dots |
Guang-Cun Shan1,2( ), Zhang-Qi Yin3, Chan Hung Shek1, Wei Huang4( ) |
1. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China; 2. The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA; 3. The Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, Beijing 100084, China; 4. Singapore-Jiangsu Joint Research Center for Organic/Bio-electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China |
|
|
Abstract In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.
|
Keywords
single-photon source
quantum dot (QD)
quantum optics
photon correlation
|
Corresponding Author(s):
Shan Guang-Cun,Email:gshan2-c@my.cityu.edu.hk; Huang Wei,Email:wei-huang@njut.edu.cn
|
Issue Date: 01 April 2014
|
|
1 |
J. M. Gérard and B. Gayral, InAs quantum dots: Artificial atoms for solid-state cavity-quantum electrodynamics, Physica E , 2001, 9(1): 131 doi: 10.1016/S1386-9477(00)00187-9
|
2 |
M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, Efficient source of single photons: A single quantum dot in a micropost microcavity, Phys. Rev. Lett. , 2002, 89(23): 233602 doi: 10.1103/PhysRevLett.89.233602
|
3 |
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature , 2004, 432(7014): 200 doi: 10.1038/nature03119
|
4 |
E. Peter, P. Senellart, D. Martrou, A. Lema?tre, J. Hours, J. M. Gérard, and J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett. , 2005, 95(6): 067401 doi: 10.1103/PhysRevLett.95.067401
|
5 |
M. Pelton and Y. Yamamoto, Ultralow threshold laser using a single quantum dot and a microsphere cavity, Phys. Rev. A , 1999, 59(3): 2418 doi: 10.1103/PhysRevA.59.2418
|
6 |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature , 2001, 409(6816): 46 doi: 10.1038/35051009
|
7 |
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. , 2002, 74(1): 145 doi: 10.1103/RevModPhys.74.145
|
8 |
N. Gisin and R. Thew, Quantum communication, Nat. Photonics , 2007, 1(3): 165 doi: 10.1038/nphoton.2007.22
|
9 |
B. Lounis and M. Orrit, Single-photon sources, Rep. Prog. Phys. , 2005, 68(5): 1129 doi: 10.1088/0034-4885/68/5/R04
|
10 |
A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryp-tography, Appl. Phys. Lett. , 1997, 70(7): 793 doi: 10.1063/1.118224
|
11 |
G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. , 2000, 85(6): 1330 doi: 10.1103/PhysRevLett.85.1330
|
12 |
A. Kuhn, M. Hennrich, and G. Rempe, Deterministic singlephoton source for distributed quantum networking, Phys. Rev. Lett. , 2002, 89(6): 067901 doi: 10.1103/PhysRevLett.89.067901
|
13 |
M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature , 2004, 431(7012): 1075 doi: 10.1038/nature02961
|
14 |
B. Lounis and W. E. Moerner, Single photon on demand from s single molecule at room temperature, Nature , 2000, 407(6803): 491 doi: 10.1038/35035032
|
15 |
C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable solid-state source of single photons, Phys. Rev. Lett. , 2000, 85(2): 290 doi: 10.1103/PhysRevLett.85.290
|
16 |
Y. M. He, Y. He, Y. J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C. Y. Lu, and J. W. Pan, Ondemand semiconductor single-photon source with near-unity indistinguishability, Nat. Nanotechnol. , 2013, 8(3): 213 doi: 10.1038/nnano.2012.262
|
17 |
A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Deterministic coupling of single quantum dots to single nanocavity modes, Science , 2005, 308(5725): 1158 doi: 10.1126/science.1109815
|
18 |
X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission, Phys. Rev. Lett. , 2004, 93(10): 107403 doi: 10.1103/PhysRevLett.93.107403
|
19 |
J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science , 2001, 292(5524): 2060 doi: 10.1126/science.1060810
|
20 |
L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater. , 2003, 2(6): 382 doi: 10.1038/nmat902
|
21 |
G. Shan, S. Bao, C. H. Shek, and W. Huang, Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal–DNA–dye conjugates, J. Lumin. , 2012, 132(6): 1472 doi: 10.1016/j.jlumin.2012.01.024
|
22 |
I. N. Stranski and L. Von Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz , 1939, 146: 797
|
23 |
G. C. Shan and S. Bao, Theoretical study of a quantum dot microcavity laser, Proc. SPIE , 2007, 6279(1): 627925 doi: 10.1117/12.725218
|
24 |
A. Salhi, G. Rain, L. Fortunato, V. Tasco, G. Visimberga, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Trampert, M. De Vittorio, and A. Passaseo, Enhanced performances of quantum dot lasers operating at 1.3 μm, IEEE J. Sel. Top. Quant. , 2008, 14(4): 1188 doi: 10.1109/JSTQE.2008.916182
|
25 |
G. C. Shan, M. J. Hu, C. H. Shek, and W. Huang, Verticalexternal-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron. , 2012, 5(2): 157 doi: 10.1007/s12200-012-0237-2
|
26 |
T. Akiyama, M. Sugawara, and Y. Arakawa, Quantum-dot semiconductor optical amplifiers, Proc. IEEE , 2007, 95(9): 1757 doi: 10.1109/JPROC.2007.900899
|
27 |
S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, and Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nat. Mater. , 2006, 5(11): 887 doi: 10.1038/nmat1763
|
28 |
P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature, Nature , 2000, 406(6799): 968 doi: 10.1038/35023100
|
29 |
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, and R. Bratschitsch, Colloidal quantum dots in all-dielectric high-Qpillar microcavities, Nano Lett. , 2007, 7(9): 2897 doi: 10.1021/nl071812x
|
30 |
T. Takagahara, Theory of exciton dephasing in semiconductor quantum dots, Phys. Rev. B , 1999, 60(19): 2638 doi: 10.1103/PhysRevB.60.2638
|
31 |
C. F?rstner, C. Weber, J. Danckwerts, and A. Knorr, Phonon-assisted damping of Rabi oscillations insemiconductor quantum dots, Phys. Rev. Lett. , 2003, 91(12): 127401 doi: 10.1103/PhysRevLett.91.127401
|
32 |
E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. , 1946, 69(11): 681
|
33 |
E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett. , 2001, 79(18): 2865 doi: 10.1063/1.1415346
|
34 |
C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications, Weinheim: Wiley-VCH, 2010
|
35 |
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997 doi: 10.1017/CBO9780511813993
|
36 |
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford: Oxford Science, 2000
|
37 |
M. Scholz, T. Aichele, and O. Benson, Single-Photon Generation from Single Quantum Dots, Semiconductor Nanostructures (in Series of NanoScience and Technology) , 2008: 329-349
|
38 |
A. J. Berglund, A. C. Doherty, and H. Mabuchi, Photon statistics and dynamics of fluorescence resonance energy transfer, Phys. Rev. Lett. , 2002, 89(6): 068101 doi: 10.1103/PhysRevLett.89.068101
|
39 |
A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Nonclassical emission from single colloidal nanocrystals in a microcavity: A route towards room temperature single photon sources, New J. Phys. , 2009, 11(3): 033025 doi: 10.1088/1367-2630/11/3/033025
|
40 |
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, A quantum dot single-photon turnstile device, Science , 2000, 290(5500): 2282 doi: 10.1126/science.290.5500.2282
|
41 |
D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett. , 2003, 3(12): 1677 doi: 10.1021/nl034815s
|
42 |
C. M. Liddell, and C. J. Summers, Monodispersed ZnS dimers, trimers, and tetramers for lower symmetry photonic crystal lattices, Adv. Mater. , 2003, 15(20): 1715 doi: 10.1002/adma.200305283
|
43 |
Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, and W. Huang, Synthesis of CdTe nanocrystals through program process of microwave irradiation, J. Phys. Chem. B , 2006, 110(27): 13352 doi: 10.1021/jp061719h
|
44 |
C. H. Bennett and G. Brassard, Int. Conf. Computers, Systems and Signal Processing, Bangalore , 1984, 1: 175
|
45 |
F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L. Manna, R. Cingolani, E. Giacobino, A. Bramati, and M. De Vittorio, Polarized single photon emission for quantum cryptography based on colloidal nanocrystals, IEEE Proc. 11th Int. Conf. Transparent Optical Networks , 2009: 1-4
|
46 |
A. Convertino, L. Cerri, G. Leo, and S. Viticoli, Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region, J. Cryst. Growth , 2004, 261(4): 458 doi: 10.1016/j.jcrysgro.2003.09.034
|
47 |
O. G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer NanoScience and Technology), Berlin: Springer, 2007
|
48 |
B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, and B. Dubertret, Towards non-blinking colloidal quantum dots, Nat. Mater. , 2008, 7(8): 659 doi: 10.1038/nmat2222
|
49 |
V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots, Science , 2000, 287(5455): 1011 doi: 10.1126/science.287.5455.1011
|
50 |
M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature , 1996, 383(6603): 802 doi: 10.1038/383802a0
|
51 |
X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. MaccagnanoZacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, Non-blinking semiconductor nanocrystals, Nature , 2009, 459(7247): 686 doi: 10.1038/nature08072
|
52 |
S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett. , 1996, 77(18): 3873 doi: 10.1103/PhysRevLett.77.3873
|
53 |
H. P. Lu and X. S. Xie, Single-molecule spectral fluctuations at room temperature, Nature , 1997, 385(6612): 143 doi: 10.1038/385143a0
|
54 |
L. Coolen, X. Brokmann, P. Spinicelli, and J. P. Hermier, Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photoncorrelation fourier spectroscopy, Phys. Rev. Lett. , 2008, 100(2): 027403 doi: 10.1103/PhysRevLett.100.027403
|
55 |
V. D. Kulakowski, B. Bacher, R. Weigand, T. Kümmel, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Fine structure of biexciton emission in symmetric and asymmetric cdse/znse single quantum dots, Phys. Rev. Lett. , 1999, 82(8): 1780 doi: 10.1103/PhysRevLett.82.1780
|
56 |
R. D. Schaller, S. A. Crooker, D. A. Bussian, J. M. Pietryga, J. Joo, and V. I. Klimov, Revealing the exciton fine structure of PbSe nanocrystal quantum dots using optical spectroscopy in high magnetic fields, Phys. Rev. Lett. , 2010, 105(6): 067403 doi: 10.1103/PhysRevLett.105.067403
|
57 |
M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot, Phys. Rev. B , 2009, 80(15): 155326 doi: 10.1103/PhysRevB.80.155326
|
58 |
S. M. Ulrich, M. Benyoucef, P. Michler, N. Baer, P. Gartner, F. Jahnke, M. Schwab, H. Kurtze, M. Bayer, S. Farad, Z. Wasilewski, and A. Forchel, Correlated photon-pair emission from a charged single quantum dot, Phys. Rev. B , 2005, 71(23): 235328 doi: 10.1103/PhysRevB.71.235328
|
59 |
A. Mueller, E. B. Flagg, P. Bianucci, X. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity, Phys. Rev. Lett. , 2007, 99(18): 187402 doi: 10.1103/PhysRevLett.99.187402
|
61 |
N. Le Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, Cavity QED with semiconductor nanocrystals, Nano Lett. , 2006, 6(3): 557 doi: 10.1021/nl060003v
|
62 |
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamolu, Quantum nature of a strongly coupled single quantum dot–cavity system, Nature , 2007, 445(7130): 896 doi: 10.1038/nature05586
|
63 |
Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity, Appl. Phys. Lett. , 2008, 93(18): 183114 doi: 10.1063/1.3020295
|
64 |
E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios, and E. Kapon, Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates, Nano Lett. , 2007, 7(5): 1282 doi: 10.1021/nl0702012
|
65 |
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Hofling, and A. Forchel, Single photon emission from a site-controlled quantum dot-micropillar cavity system, Appl. Phys. Lett. , 2009, 94(11): 111111 doi: 10.1063/1.3097016
|
66 |
P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities, Appl. Phys. Lett. , 2008, 92(26): 263101 doi: 10.1063/1.2952278
|
67 |
M. Poitras, C. B. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity, Appl. Phys. Lett. , 2003, 82(23): 4032 doi: 10.1063/1.1581007
|
68 |
L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology, Appl. Phys. Lett. , 2006, 88(18): 181108 doi: 10.1063/1.2200748
|
69 |
M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission, Nano Lett. , 2001, 1(6): 309 doi: 10.1021/nl015545l
|
70 |
A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. D e Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Room temperature single-photon sources based on single colloidal nanocrystals in microcavities, Superlattices Microstruct. , 2010, 47(1): 187 doi: 10.1016/j.spmi.2009.05.004
|
71 |
F. Pisanello, A. Qualtieri, G. Lemünager, L. Martiradonna, T. Stomeo, R. Cingolani, A. Bramati, and M. De Vittorio, Single colloidal quantum dots as sources of single photons for quantum cryptography, Proc. SPIE , 2011, 7947(1): 794709 doi: 10.1117/12.880575
|
72 |
A. Qualtieri, L. Martiradonna, T. Stomeo, M. T. Todaro, R. Cingolani, and M. De Vittorio, Multicolored devices fabricated by direct lithography of colloidal nanocrystals, Microelectron. Eng. , 2009, 86(4): 1127 doi: 10.1016/j.mee.2008.11.073
|
73 |
A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett. , 2004, 4(10): 1821 doi: 10.1021/nl049216f
|
74 |
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Phys. Rev. Lett. , 2001, 86(8): 1502 doi: 10.1103/PhysRevLett.86.1502
|
75 |
A. Malko, D. Y. Oberli, M. H. Baier, E. Pelucchi, F. Michelini, K. F. Karlson, M. A. Dupertuis, and E. Kapon, Singlephoton emission from pyramidal quantum dots: The impact of hole thermalization on photon emission statistics, Phys. Rev. B , 2005, 72(19): 195332 doi: 10.1103/PhysRevB.72.195332
|
76 |
A. Malko, M. H. Baier, K. F. Karlson, E. Pelucchi, D. Y. Oberli, and E. Kapon, Optimization of the efficiency of single-photon sources based on quantum dots under optical excitation, Appl. Phys. Lett. , 2006, 88(8): 081905 doi: 10.1063/1.2177547
|
77 |
S. Kiravittaya, M. Benyoucef, R. Zapf-Gottwick, A. Rastelli, and O. G. Schmidt, Ordered GaAs quantum dot arrays on GaAs(001): Single photon emission and fine structure splitting, Appl. Phys. Lett. , 2006, 89(23): 233102 doi: 10.1063/1.2399354
|
78 |
S. Kimura, H. Kumano, M. Endo, I. Suemune, T. Yokoi, H. Sasakura, S. Adachi, S. Muto, H. Z. Song, S. Hirose, and T. Usuki, Single-photon generation from InAlAs single quantum dot, Phys. Status Solidi (c) , 2005, 2(11): 3833 doi: 10.1002/pssc.200562027
|
79 |
M. Bommer, W. M. Schulz, R. Rosbach, M. Jetter, P. Michler, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Triggered single-photon emission in the red spectral range from optically excited InP/(Al,Ga)InP quantum dots embedded in micropillars up to 100 K, J. Appl. Phys. , 2011, 110(6): 063108 doi: 10.1063/1.3633218
|
80 |
A. Ugur, S. Kremling, F. Hatami, S. H?fling, L. Worschech, A. Forchel, and W. T. Masselink, Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots, Appl. Phys. Lett. , 2012, 100(2): 023116 doi: 10.1063/1.3676273
|
81 |
M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, On-demand single-photon source for 1.3 μm telecom fiber, Appl. Phys. Lett. , 2005, 86(20): 201111 doi: 10.1063/1.1922573
|
82 |
T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, Single-photon emission from single quantum dots in a hybrid pillar microcavity, Appl. Phys. Lett. , 2008, 92(8): 081906 doi: 10.1063/1.2840711
|
83 |
S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Boumeester, High-frequency singlephoton source with polarization control, Nat. Photonics , 2007, 1(12): 704 doi: 10.1038/nphoton.2007.227
|
84 |
J. Kim, O. Benson, H. Kan, and Y. Yamamoto, A singlephoton turnstile device, Nature , 1999, 397(6719): 500 doi: 10.1038/17295
|
85 |
A. J. Shields, Semiconductor quantum light sources, Nat. Photonics , 2007, 1(4): 215 doi: 10.1038/nphoton.2007.46
|
86 |
A. J. Bennett, D. C. Unitt, P. See, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrical control of the uncertainty in the time of single photon emission events, Phys. Rev. B , 2005, 72(3): 033316 doi: 10.1103/PhysRevB.72.033316
|
87 |
M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrically driven telecommunication wavelength single-photon source, Appl. Phys. Lett. , 2007, 90(6): 063512 doi: 10.1063/1.2472172
|
88 |
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. H?fling, M. Kamp, and A. Forchel, Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency, Appl. Phys. Lett. , 2010, 96(1): 011107 doi: 10.1063/1.3284514
|
89 |
D. J. Ellis, A. J. Bennett, A. J. Shields, P. Atkinson, and D. A. Ritchie, Electrically addressing a single self-assembled quantum dot, Appl. Phys. Lett. , 2006, 88(13): 133509 doi: 10.1063/1.2190451
|
90 |
M. Scholz, S. Büttner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, F. Hopfer, V. A. Haisler, and D. Bimberg, Non-classical light emission from a single electrically driven quantum dot, Opt. Express , 2007, 15(15): 9107 doi: 10.1364/OE.15.009107
|
91 |
D. J . P. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz, New J. Phys. , 2008, 10(4): 043035 doi: 10.1088/1367-2630/10/4/043035
|
92 |
M. Reischle, G. J. Beirne, W. M. Schulz, M. Eichfelder, R. Rosbach, M. Jetter, and P. Michler, Electrically pumped single-photon emission in the visible spectral range up to 80 K, Opt. Express , 2008, 16(17): 12771 doi: 10.1364/OE.16.012771
|
93 |
P. Ester, L. Lackmann, S. Michaelis de Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, Single photon emission based on coherent state preparation, Appl. Phys. Lett. , 2007, 91(11): 111110 doi: 10.1063/1.2784173
|
94 |
D. Press, S. Gtzinger, S. Reitzenstein, C. Hofmann, A. Lffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime, Phys. Rev. Lett. , 2007, 98(11): 117402 doi: 10.1103/PhysRevLett.98.117402
|
96 |
R. Arians, T. Kmmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Room temperature emission from CdSe/ZnSSe/MgS single quantum dots, Appl. Phys. Lett. , 2007, 90(10): 101114 doi: 10.1063/1.2710787
|
97 |
A. Tribu, G. Sallen, T. Aichele, R. André, J. P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, A high-temperature single-photon source from nanowire quantum dots, Nano Lett. , 2008, 8(12): 4326 doi: 10.1021/nl802160z
|
98 |
A. F. Jarjour, R. A. Oliver, R. A. Taylor, Nitride-based quantum dots for single photon source applications, physica status solidi (a) , 2009, 206(11): 2510
|
99 |
O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Room temperature single photon emission from an epitaxially grown quantum dot, Appl. Phys. Lett. , 2012, 100(6): 061114 doi: 10.1063/1.3683498
|
100 |
B. S. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Qphotonic double-heterostructure nanocavity, Nat. Mater. , 2005, 4(3): 207 doi: 10.1038/nmat1320
|
101 |
W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities, Phys. Rev. A , 2011, 84(4): 043849 doi: 10.1103/PhysRevA.84.043849
|
102 |
S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. , 1987, 58(23): 2486 doi: 10.1103/PhysRevLett.58.2486
|
103 |
L. Florescu, Nonclassical light generation by a photoniccrystal one-atom laser, Phys. Rev. A , 2008, 78(2): 023827 doi: 10.1103/PhysRevA.78.023827
|
104 |
M. I. Makin, J. H. Cole, C. Tahan, L. C. L. Hollenberg, and A. D. Greentree, Quantum phase transitions in photonic cavities with two-level systems, Phys. Rev. A , 2008, 77(5): 053819 doi: 10.1103/PhysRevA.77.053819
|
105 |
S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity, Phys. Rev. Lett. , 2005, 94(3): 033903 doi: 10.1103/PhysRevLett.94.033903
|
106 |
M. G. Banaee, A. G. Pattantyus-Abraham, M. W. Mccutcheon, G. W. Rieger, and J. F. Young, Efficient coupling of photonic crystal microcavity modes to a ridge waveguide, Appl. Phys. Lett. , 2007, 90(19): 193106 doi: 10.1063/1.2737369
|
107 |
P. Yao, and S. Hughes, Controlled cavity-QED using a planar photonic crystal waveguide-cavity system, arXiv: 0904.4469v2 , 2009
|
108 |
V. S. C. Manga Rao, and S. Hughes, Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides, Opt. Lett. , 2008, 33(14): 1587 doi: 10.1364/OL.33.001587
|
109 |
R. Bose, K. Roy, T. Cai, G. S. Solomon, and E. Waks, APS March Meeting 2013, 58(1): A26.00009
|
110 |
A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity, Phys. Rev. Lett. , 2010, 104(4): 047402 doi: 10.1103/PhysRevLett.104.047402
|
111 |
E. D. Kim, K. Truex, X. Xu, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Fast spin rotations by optically controlled geometric phases in a charge-tunable inas quantum dot, Phys. Rev. Lett. , 2010, 104(16): 167401 doi: 10.1103/PhysRevLett.104.167401
|
112 |
B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vu?kovi?, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser, Nat. Photonics , 2011, 5: 297 doi: 10.1038/nphoton.2011.51
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|