|
|
Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons |
Guang-cun SHAN (单光存)1,2, Shu-ying BAO (包术颖)3( ), Kang ZHANG (张康)4, Wei HUANG (黄维)1 |
1. Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2. Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China; 3. Department of Physics, Fudan University, Shanghai 200433, China; 4. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics technology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter–nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to understanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.
|
Keywords
quantum plasmonics
quantum optics
metallic nanowire
surface plasmon (SP)
quantum dot
|
Corresponding Author(s):
BAO (包术颖) Shu-ying,Email:bao.shuying@gmail.com
|
Issue Date: 05 September 2011
|
|
1 |
S. Nie and S. R. Emory, Science , 1997, 275: 1102 doi: 10.1126/science.275.5303.1102
|
2 |
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. , 1997, 78: 1667 doi: 10.1103/PhysRevLett.78.1667
|
3 |
H. X. Xu, J. Aizpurua, M. K?ll, and P. Apell, Phys. Rev. E , 2000, 62: 4318 doi: 10.1103/PhysRevE.62.4318
|
4 |
H. X. Xu, X. H. Wang, M. Persson, H. Q. Xu, M. K?ll, and P. Johansson, Phys. Rev. Lett. , 2004, 93: 243002 doi: 10.1103/PhysRevLett.93.243002
|
5 |
I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. , 2005, 94: 057401 doi: 10.1103/PhysRevLett.94.057401
|
6 |
G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, Nature Methods , 2007, 4: 1015 doi: 10.1038/nmeth1133
|
7 |
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, L. Dai, G. Bartal, and X. Zhang, Nature , 2009, 461: 629 doi: 10.1038/nature08364
|
8 |
G. C. Shan and W. Huang, J. Nanosci. Nanotechnol. , 2009, 9: 1176 doi: 10.1166/jnn.2009.C114
|
9 |
A. K. Ekert, Phys. Rev. Lett. , 1991, 67: 661 doi: 10.1103/PhysRevLett.67.661
|
10 |
R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. , 1992, 68: 1132 doi: 10.1103/PhysRevLett.68.1132
|
11 |
D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. , 2006, 97: 053002 doi: 10.1103/PhysRevLett.97.053002
|
12 |
D. E. Chang, A. S. S?rensen, E. A. Demler, and M. D. Lukin, Nat. Phys. , 2007, 3: 807 doi: 10.1038/nphys708
|
13 |
L. Childress, A. S. S?rensen, and M. D. Lukin, Phys. Rev. A , 2004, 69: 042302 doi: 10.1103/PhysRevA.69.042302
|
14 |
A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature , 2007, 450: 402 doi: 10.1038/nature06230
|
15 |
Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. A , 2009, 79: 033815 doi: 10.1103/PhysRevA.79.033815
|
16 |
D. Dzsotjan, A. S. Sorensen, and M. Fleischhauer, Phys. Rev. B , 2010, 82: 075427 doi: 10.1103/PhysRevB.82.075427
|
17 |
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1999
|
18 |
H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
|
19 |
J. M. Wylie and J. E. Sipe, Phys. Rev. A , 1984, 30: 1185 doi: 10.1103/PhysRevA.30.1185
|
20 |
V. V. Klimov and M. Ducloy, Phys. Rev. A , 2004, 69: 013812 doi: 10.1103/PhysRevA.69.013812
|
21 |
P. B. Johnson and R. W. Christy, Phys. Rev. B , 1972, 6: 4370 doi: 10.1103/PhysRevB.6.4370
|
22 |
J. D. Jackson, Classical Electrodynamics, New York: Wiley, 1999
|
23 |
G. C. Shan and W. Huang, Front. Phys. China , 2006, 1(4): 405 doi: 10.1007/s11467-006-0053-5
|
24 |
S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. , 2006, 97: 017402 doi: 10.1103/PhysRevLett.97.017402
|
25 |
D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B , 2007, 76: 035420 doi: 10.1103/PhysRevB.76.035420
|
26 |
H. Wei, D. Ratchford, X. Q. Li, H. X. Xu, and C. K. Shih, Nano Lett. , 2009, 9: 4168 doi: 10.1021/nl9023897
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|