Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (3) : 313-319    https://doi.org/10.1007/s11467-011-0162-7
RESEARCH ARTICLE
Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons
Guang-cun SHAN (单光存)1,2, Shu-ying BAO (包术颖)3(), Kang ZHANG (张康)4, Wei HUANG (黄维)1
1. Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2. Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China; 3. Department of Physics, Fudan University, Shanghai 200433, China; 4. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics technology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter–nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to understanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.

Keywords quantum plasmonics      quantum optics      metallic nanowire      surface plasmon (SP)      quantum dot     
Corresponding Author(s): BAO (包术颖) Shu-ying,Email:bao.shuying@gmail.com   
Issue Date: 05 September 2011
 Cite this article:   
Guang-cun SHAN (单光存),Shu-ying BAO (包术颖),Kang ZHANG (张康), et al. Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0162-7
https://academic.hep.com.cn/fop/EN/Y2011/V6/I3/313
1 S. Nie and S. R. Emory, Science , 1997, 275: 1102
doi: 10.1126/science.275.5303.1102
2 K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. , 1997, 78: 1667
doi: 10.1103/PhysRevLett.78.1667
3 H. X. Xu, J. Aizpurua, M. K?ll, and P. Apell, Phys. Rev. E , 2000, 62: 4318
doi: 10.1103/PhysRevE.62.4318
4 H. X. Xu, X. H. Wang, M. Persson, H. Q. Xu, M. K?ll, and P. Johansson, Phys. Rev. Lett. , 2004, 93: 243002
doi: 10.1103/PhysRevLett.93.243002
5 I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. , 2005, 94: 057401
doi: 10.1103/PhysRevLett.94.057401
6 G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, Nature Methods , 2007, 4: 1015
doi: 10.1038/nmeth1133
7 R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, L. Dai, G. Bartal, and X. Zhang, Nature , 2009, 461: 629
doi: 10.1038/nature08364
8 G. C. Shan and W. Huang, J. Nanosci. Nanotechnol. , 2009, 9: 1176
doi: 10.1166/jnn.2009.C114
9 A. K. Ekert, Phys. Rev. Lett. , 1991, 67: 661
doi: 10.1103/PhysRevLett.67.661
10 R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. , 1992, 68: 1132
doi: 10.1103/PhysRevLett.68.1132
11 D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. , 2006, 97: 053002
doi: 10.1103/PhysRevLett.97.053002
12 D. E. Chang, A. S. S?rensen, E. A. Demler, and M. D. Lukin, Nat. Phys. , 2007, 3: 807
doi: 10.1038/nphys708
13 L. Childress, A. S. S?rensen, and M. D. Lukin, Phys. Rev. A , 2004, 69: 042302
doi: 10.1103/PhysRevA.69.042302
14 A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature , 2007, 450: 402
doi: 10.1038/nature06230
15 Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. A , 2009, 79: 033815
doi: 10.1103/PhysRevA.79.033815
16 D. Dzsotjan, A. S. Sorensen, and M. Fleischhauer, Phys. Rev. B , 2010, 82: 075427
doi: 10.1103/PhysRevB.82.075427
17 M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1999
18 H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
19 J. M. Wylie and J. E. Sipe, Phys. Rev. A , 1984, 30: 1185
doi: 10.1103/PhysRevA.30.1185
20 V. V. Klimov and M. Ducloy, Phys. Rev. A , 2004, 69: 013812
doi: 10.1103/PhysRevA.69.013812
21 P. B. Johnson and R. W. Christy, Phys. Rev. B , 1972, 6: 4370
doi: 10.1103/PhysRevB.6.4370
22 J. D. Jackson, Classical Electrodynamics, New York: Wiley, 1999
23 G. C. Shan and W. Huang, Front. Phys. China , 2006, 1(4): 405
doi: 10.1007/s11467-006-0053-5
24 S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. , 2006, 97: 017402
doi: 10.1103/PhysRevLett.97.017402
25 D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B , 2007, 76: 035420
doi: 10.1103/PhysRevB.76.035420
26 H. Wei, D. Ratchford, X. Q. Li, H. X. Xu, and C. K. Shih, Nano Lett. , 2009, 9: 4168
doi: 10.1021/nl9023897
[1] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[2] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[3] J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities[J]. Front. Phys. , 2018, 13(1): 130305-.
[4] Qi-Bo Zeng,Shu Chen,L. You,Rong Lü. Transport through a quantum dot coupled to two Majorana bound states[J]. Front. Phys. , 2017, 12(4): 127302-.
[5] Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Front. Phys. , 2017, 12(4): 128502-.
[6] Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy[J]. Front. Phys. , 2015, 10(1): 108101-.
[7] Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang. Single photon sources with single semiconductor quantum dots[J]. Front. Phys. , 2014, 9(2): 170-193.
[8] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[9] Christoph Stampfer, Stefan Fringes, Johannes Güttinger, Francoise Molitor, Christian Volk, Bernat Terrés, Jan Dauber, Stephan Engels, Stefan Schnez, Arnhild Jacobsen, Susanne Droscher, Thomas Ihn, Klaus Ensslin. Transport in graphene nanostructures[J]. Front. Phys. , 2011, 6(3): 271-293.
[10] Hai-feng MA (马海峰), Mario THOMANN, Jeanette SCHMIDLIN, Silvan ROTH, Martin MORSCHER, Thomas GREBER. Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays[J]. Front Phys Chin, 2010, 5(4): 387-392.
[11] Jing-feng LIU(刘景锋), Xue-hua WANG(王雪华), . Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
[12] ZHAO Hong-kang, WANG Jian. Shot noises of spin and charge currents in a ferromagnet-quantum-dot-ferromagnet system[J]. Front. Phys. , 2008, 3(3): 280-293.
[13] SHAN Guang-cun, BAO Shu-ying, HUANG Wei. Another model for a multiexcitonic quantum dot in an optical microcavity[J]. Front. Phys. , 2007, 2(1): 63-67.
[14] LI Huan, LI Huan, GUO Wei, GUO Wei. Influence of local spin polarization to the Kondo effect[J]. Front. Phys. , 2007, 2(1): 41-43.
[15] ZHANG Guan-jie, SHU Yong-chun, YAO Jiang-hong, SHU Qiang, DENG Hao-liang, JIA Guo-zhi, WANG Zhan-guo. Characteristics and developments of quantum-dot infrared photodetectors[J]. Front. Phys. , 2006, 1(3): 334-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed