Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.
RESEARCH ARTICLE
Solving the dark-matter problem through dynamic interactions
Werner A. Hofer()
School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
 Download: PDF(208 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Owing to the renewed interest in dark matter after the upgrade of the large hadron collider and its dedication to dark-matter research, it is timely to reassess the whole problem. Considering dark matter is one way to reconcile the discrepancy between the velocity of matter in the outer regions of galaxies and the observed galactic mass. Thus far, no credible candidate for dark matter has been identified. Here, we develop a model accounting for observations by rotations and interactions between rotating objects analogous to magnetic fields and interactions with moving charges. The magnitude of these fields is described by a fundamental constant on the order of 10−41kg−1. The same interactions can be observed in the solar system, where they lead to small changes in planetary orbits.

Keywords galactic rotation curves      dark matter      solar system      perihelion of Mercury      nodes of Venus     
Corresponding Author(s): Werner A. Hofer   
Online First Date: 18 November 2015    Issue Date: 28 December 2015
 Cite this article:   
Werner A. Hofer. Solving the dark-matter problem through dynamic interactions[J]. Front. Phys. , 18 November 2015. [Epub ahead of print] doi: 10.1007/s11467-015-0514-9.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0514-9
https://academic.hep.com.cn/fop/EN/Y/V/I/4
1 H. I. Ewen and E. M. Purcell, Observation of a line in the galactic radio spectrum: radiation from galactic hydrogen at 1420 Mc./sec., Nature168, 356 (1951)
https://doi.org/10.1038/168356a0
2 Vera C. Rubin and W. Kent Ford Jr., Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions, Astrophys. J. 159, 379 (1970)
https://doi.org/10.1086/150317
3 H. J. Rood, Clusters of galaxies, Rep. Prog. Phys.44(10), 1077 (1981)
https://doi.org/10.1088/0034-4885/44/10/002
4 K. G. Begeman, A. H. Broeils, and R. H. Sanders, Extended rotation curves of spiral galaxies- Dark haloes and modified dynamics, Mon. Not. R. Astron. Soc.249, 523 (1991)
https://doi.org/10.1093/mnras/249.3.523
5 . See, for example, the dark matter focus on the NASA website
6 X.-J. Bi, P.-F. Yin, and Q. Yuan, Status of dark matter detection, Front. Phys.8(6), 794 (2013)
https://doi.org/10.1007/s11467-013-0330-z
7 M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J.270, 365 (1983)
https://doi.org/10.1086/161130
8 M. Milgrom, A modification of the Newtonian dynamics- Implications for galaxies, Astrophys. J.270, 371 (1983)
https://doi.org/10.1086/161131
9 J. D. Jackson, Classical Electrodynamics, 3rd Ed., NJ: Wiley, 1998
10 S. Torres-Flores, B. Epinat, P. Amram, H. Plana, C. Mendes de Oliveira, GHASP: An H α kinematic survey of spiral and irregular galaxies- IX: The near-infrared, stellar and baryonic Tully–Fisher relations, Mon. Not. R. Astron. Soc.416, 1936 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19169.x
11 See the NASA website at: /
12 For the calculations we assumed circular orbits, with rM=5.79 × 1010m and ωM= 1.32 × 10−7s−1 for Mercury, and rE= 1.50 × 1011m and ωE= 3.17 × 10−8s−1 for Earth.
13 G. M. Clemence, The relativity effect in planetary motions, Rev. Mod. Phys.19, 361 (1947)
https://doi.org/10.1103/RevModPhys.19.361
14 For the calculations of Venus we assumed a circular orbit with rV= 1.08 × 1011m and ωV= 5.15 × 10−8s−1.
15 Jean Chazy, La Theorie de la relativite et la Mechanique celeste, Gauthier Villars, Paris,1928, p. 230
[1] Zun-Lei Xu, Kai-Kai Duan, Wei Jiang, Shi-Jun Lei, Xiang Li, Zhao-Qiang Shen, Tao Ma, Meng Su, Qiang Yuan, Chuan Yue, Yi-Zhong Fan, Jin Chang. Optimal gamma-ray selections for monochromatic line searches with DAMPE[J]. Front. Phys. , 2022, 17(3): 34501-.
[2] Li Zhao, Jianglai Liu. Experimental search for dark matter in China[J]. Front. Phys. , 2020, 15(4): 44301-.
[3] Ke-Jun Kang, Jian-Ping Cheng, Jin Li, Yuan-Jing Li, Qian Yue, Yang Bai, Yong Bi, Jian-Ping Chang, Nan Chen, Ning Chen, Qing-Hao Chen, Yun-Hua Chen, Yo-Chun Chuang, Zhi Deng, Qiang Du, Hui Gong, Xi-Qing Hao, Hong-Jian He, Qing-Ju He, Xin-Hui Hu, Han-Xiong Huang, Teng-Rui Huang, Hao Jiang, Hau-Bin Li, Jian-Min Li, Jun Li, Xia Li, Xin-Ying Li, Xue-Qian Li, Yu-Lan Li, Heng-Ye Liao, Fong-Kay Lin, Shin-Ted Lin, Shu-Kui Liu, Ya-Bin Liu, Lan-Chun Lü, Hao Ma, Shao-Ji Mao, Jian-Qiang Qin, Jie Ren, Jing Ren, Xi-Chao Ruan, Man-Bin Shen, Man-Bin Shen, Lakhwinder Simgh, Manoj Kumar Singh, Arun Kumar Soma, Jian Su, Chang-Jian Tang, Chao-Hsiung Tseng, Ji-Min Wang, Li Wang, Qing Wang, Tsz-King Henry Wong, Xu-Feng Wang, Shi-Yong Wu, Wei Wu, Yu-Cheng Wu, Zhong-Zhi Xianyu, Hao-Yang Xing, Xun-Jie Xu, Yin Xu, Tao Xue, Li-Tao Yang, Song-Wei Yang, Nan Yi, Chun-Xu Yu, Hao Yu, Xun-Zhen Yu, Xiong-Hui Zeng, Zhi Zeng, Lan Zhang, Yun-Hua Zhang, Ming-Gang Zhao, Wei Zhao, Su-Ning Zhong, Jin Zhou, Zu-Ying Zhou, Jing-Jun Zhu, Wei-Bin Zhu, Xue-Zhou Zhu, Zhong-Hua Zhu. Introduction to the CDEX experiment[J]. Front. Phys. , 2018, 13(4): 412-437.
[4] Bing-Lin Young. A survey of dark matter and related topics in cosmology[J]. Front. Phys. , 2017, 12(2): 121201-.
[5] Peng-Fei Yin,Shou-Hua Zhu. Light dark sector searches at low-energy high-luminosity e+e colliders[J]. Front. Phys. , 2016, 11(5): 111403-.
[6] Yang Hu (胡杨), You-Kai Wang (王由凯), Peng-Fei Yin (殷鹏飞), Shou-Hua Zhu (朱守华). On physics beyond standard model[J]. Front. Phys. , 2013, 8(5): 516-539.
[7] Pran Nath. Perspectives on Higgs boson and supersymmetry[J]. Front. Phys. , 2013, 8(3): 294-301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed