|
|
Experimental search for dark matter in China |
Li Zhao1( ), Jianglai Liu1,2( ) |
1. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2. Tsung-Dao Lee Institute, Shanghai 200240, China |
|
|
Abstract The nature of dark matter is one of the greatest mysteries in modern physics and astronomy. A wide variety of experiments have been carried out worldwide to search for the evidence of particle dark matter. Chinese physicists started experimental search for dark matter about ten years ago, and have produced results with high scientific impact. In this paper, we present an overview of the dark matter program in China, and discuss recent results and future directions.
|
Keywords
dark matter
weakly interacting massive particle (WIMP)
direct detection
indirect detection
Xenon
Germanium
|
Corresponding Author(s):
Li Zhao,Jianglai Liu
|
Issue Date: 13 May 2020
|
|
1 |
F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. 86, 217 (1937)
https://doi.org/10.1086/143864
|
2 |
V. C. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. 159, 379 (1970)
https://doi.org/10.1086/150317
|
3 |
S. W. Allen, A. E. Evrard, and A. B. Mantz, Cosmological parameters from observations of galaxy clusters, Annu. Rev. Astron. Astrophys. 49(1), 409 (2011)
https://doi.org/10.1146/annurev-astro-081710-102514
|
4 |
E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley Publishing Company, 1990
|
5 |
P. A. R. Ade, et al.. (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 57, A16 (2013)
|
6 |
R. Oerter, The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics, Penguin Group, 2006
|
7 |
G. Aad, et al.. (ATLAS Collaboration), Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012)
|
8 |
S. Chatrchyan, et al.. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716(1), 30 (2012)
|
9 |
G. Kane and M. Shifman (Eds.), The Supersymmetric World — The Beginnings of the Theory, World Scientific, Singapore, 2000
https://doi.org/10.1142/4611
|
10 |
N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429(3–4), 263 (1998)
https://doi.org/10.1016/S0370-2693(98)00466-3
|
11 |
L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83(17), 3370 (1999)
https://doi.org/10.1103/PhysRevLett.83.3370
|
12 |
G. Jungman, M. Kamionkowski, K. Griest, and S. D. Matters, Supersymmetric dark matter, Phys. Rep. 267(5–6), 195 (1996)
https://doi.org/10.1016/0370-1573(95)00058-5
|
13 |
G. Servant and T. M. P. Tait, Is the lightest Kaluza–Klein particle a viable dark matter candidate? Nucl. Phys. B 650(1–2), 391 (2003)
https://doi.org/10.1016/S0550-3213(02)01012-X
|
14 |
M. C. Smith, G. R. Ruchti, A. Helmi, R. F. G. Wyse, J. P. Fulbright, K. C. Freeman, J. F. Navarro, G. M. Seabroke, M. Steinmetz, M. Williams, O. Bienayme, J. Binney, J. Bland-Hawthorn, W. Dehnen, B. K. Gibson, G. Gilmore, E. K. Grebel, U. Munari, Q. A. Parker, R. D. Scholz, A. Siebert, F. G. Watson, and T. Zwitter, The RAVE survey: Constraining the local galactic escape speed, Mon. Not. R. Astron. Soc. 379(2), 755 (2007)
https://doi.org/10.1111/j.1365-2966.2007.11964.x
|
15 |
C. Savage, K. Freese, and P. Gondolo, Annual modulation of dark matter in the presence of streams, Phys. Rev. D 74(4), 043531 (2006)
https://doi.org/10.1103/PhysRevD.74.043531
|
16 |
R. Agnese, et al.. (CDMS Collaboration), Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111(25), 251301 (2013)
|
17 |
Z. Ahmed, et al.. (CDMS Collaboration), Results from a low-energy analysis of the CDMS II Germanium data, Phys. Rev. Lett. 106(13), 131302 (2011)
|
18 |
G. Angloher, et al.. (CRESST Collaboration), Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 774(12), 3184 (2014)
|
19 |
C. E. Aalseth, et al.. (CoGeNT Collaboration), CoGeNT: A search for low-mass dark matter using p-type point contact Germanium Detectors, Phys. Rev. D 88(1), 012002 (2013)
https://doi.org/10.1103/PhysRevD.88.012002
|
20 |
K. J. Kang, et al.. (CDEX Collaboration), Introduction to the CDEX experiment, Front. Phys. 8(4), 412 (2013)
|
21 |
E. Aprile, et al.. (XENON100 Collaboration), Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109(18), 181301 (2012)
|
22 |
D. S. Akerib, et al.. (LUX Collaboration), First results from the LUX dark matter experiment at the Sanford underground research facility, Phys. Rev. Lett. 112(9), 091303 (2014)
|
23 |
X. G. Cao, et al.. (PandaX Collaboration), PandaX: A liquid xenon dark matter experiment at CJPL, Sci. China Phys. Mech. Astron. 57(8), 1476 (2014)
|
24 |
T. Alexander, et al.. (DarkSide Collaboration), DarkSide search for dark matter, J. Instrum. 8(11), C11021 (2014)
|
25 |
M. Boulay, B. Cai, and the Deap/Clean Collaboration, Dark matter search at SNOLAB with DEAP-1 and DEAP/CLEAN-3600, J. Phys. Conf. Ser. 136(4), 042081 (2008)
https://doi.org/10.1088/1742-6596/136/4/042081
|
26 |
A. Tan, et al.. (PandaX Collaboration), Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117(12), 121303 (2016)
|
27 |
X. Cui, et al.. (PandaX Collaboration), Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119(18), 181302 (2017)
|
28 |
E. Aprile, et al.. (XENON Collaboration), Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121(11), 111302 (2018)
|
29 |
P. Agnes, et al.. (DarkSide Collaboration), Low-mass dark matter search with the DarkSide-50 experiment,Phys. Rev. Lett. 121(8), 081307 (2018)
|
30 |
A. H. Abdelhameed, et al.. (CRESST collaboration), First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100(10), 102002 (2019)
|
31 |
J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89(2), 023524 (2014)
https://doi.org/10.1103/PhysRevD.89.023524
|
32 |
K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys. Conf. Ser. 203, 012028 (2010)
https://doi.org/10.1088/1742-6596/203/1/012028
|
33 |
Y. C. Wu, X. Q. Hao, Q. Yue, Y. J. Li, J. P. Cheng, K. J. Kang, Y. H. Chen, J. Li, J. M. Li, Y. L. Li, S. K. Liu, H. Ma, J. B. Ren, M. B. Shen, J. M. Wang, S. Y. Wu, T. Xue, N. Yi, X. H. Zeng, Z. Zeng, and Z. H. Zhu, Measurement of cosmic ray flux in the China JinPing underground laboratory, Chin. Phys. C 37(8), 086001 (2013)
https://doi.org/10.1088/1674-1137/37/8/086001
|
34 |
J. P. Cheng, K. J. Kang, J. M. Li, J. Li, Y. J. Li, Q. Yue, Z. Zeng, Y. H. Chen, S. Y. Wu, X. D. Ji, and H. T. Wong, The China Jinping underground laboratory and its early science, Annu. Rev. Nucl. Part. Sci. 67(1), 231 (2017)
https://doi.org/10.1146/annurev-nucl-102115-044842
|
35 |
J. Angle, et al.. (XENON Collaboration), First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100(2), 021303 (2008)
|
36 |
G. J. Alner, et al.. (ZEPLIN-II Collaboration), Limits on spin-dependent WIMP-nucleon cross-section from the ZEPLIN-II data,Phys. Lett. B 653, 161 (2007)
|
37 |
M. J. Xiao, et al.. (PandaX Collaboration), First dark matter search results from the PandaX-I experiment, Sci. China Phys. Mech. Astron. 57(11), 2024 (2014)
|
38 |
X. Xiao, et al.. (PandaX Collaboration), Low-mass dark matter search results from full exposure of the PandaX-I experiment, Phys. Rev. D 92(5), 052004 (2015)
|
39 |
R. Bernabei, et al.. (DAMA Collaboration), Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J. C 73(12), 2648 (2013)
https://doi.org/10.1140/epjc/s10052-013-2648-7
|
40 |
C. E. Aalseth, et al.. (CoGeNT Collaboration), Maximum likelihood signal extraction method applied to 3.4 years of CoGeNT data, arXiv:1401.6234v3 (2014)
|
41 |
T. Zhang, C. Fu, X. Ji, J. Liu, X. Liu, X. Wang, C. Yao, and X. Yuan, Low background stainless steel for the pressure vessel in the PandaX-II dark matter experiment, J. Instrum. 11(09), T09004 (2016)
https://doi.org/10.1088/1748-0221/11/09/T09004
|
42 |
D. S. Akerib, et al.. (LUX Collaboration), Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116(16), 161301 (2015)
|
43 |
C. Fu, et al.. (PandaX Collaboration), Spin-dependent WIMP-nucleon cross section limits from first data of PandaX-II experiment, Phys. Rev. Lett. 118, 071301 (2017)
https://doi.org/10.1103/PhysRevLett.118.071301
|
44 |
D. S. Akerib, et al.. (LUX Collaboration), Tritium calibration of the LUX dark matter experiment, Phys. Rev. D 93(7), 072009 (2016)
|
45 |
E. Aprile, et al.. (XENON Collaboration), First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119(18), 181301 (2017)
|
46 |
D. S. Akerib, et al.. (LUX Collaboration), Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118(2), 021303 (2017)
|
47 |
S. Weinberg, A new light boson? Phys. Rev. Lett. 40(4), 223 (1978)
https://doi.org/10.1103/PhysRevLett.40.223
|
48 |
F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40(5), 279 (1978)
https://doi.org/10.1103/PhysRevLett.40.279
|
49 |
C. Fu, et al.. (PandaX Collaboration), Limits on axion couplings from the first 80 days of data of the PandaX-II experiment, Phys. Rev. Lett. 119(18), 181806 (2017)
https://doi.org/10.1103/PhysRevLett.119.181806
|
50 |
X. Ren, et al.. (PandaX Collaboration), Constraining dark matter models with a light mediator at the PandaX-II experiment, Phys. Rev. Lett. 121(2), 021304 (2018)
|
51 |
A. Kamada, M. Kaplinghat, A. B. Pace, and H. B. Yu, Self-interacting dark matter can explain diverse galactic rotation curves, Phys. Rev. Lett. 119(11), 111102 (2017)
https://doi.org/10.1103/PhysRevLett.119.111102
|
52 |
J. Xia, et al.. (PandaX Collaboration), PandaX-II constraints on spin-dependent WIMP-nucleon effective interactions, Phys. Lett. B 792, 193 (2019)
|
53 |
K. Ni, et al.. (PandaX Collaboration), Searching for neutrino-less double beta decay of Xe-136 with PandaXII liquid xenon detector, Chin. Phys. C 43, 113001 (2019)
|
54 |
H. Zhang, et al.. (PandaX Collaboration), Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 43, 113001 (2019)
|
55 |
J. Liu, X. Chen, and X. Ji, Current status of direct dark matter detection experiments, Nat. Phys. 13(3), 212 (2017)
https://doi.org/10.1038/nphys4039
|
56 |
W. Zhao, et al., (CDEX Collaboration), Progress in the China Dark Matter Experiment (CDEX), Chin. Sci. Bull. 60(25), 2376 (2015)
https://doi.org/10.1360/N972014-01285
|
57 |
W. Zhao, et al.. (CDEX Collaboration), First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory, Phys. Rev. D 88(5), 052004 (2013)
|
58 |
H. B. Li, et al.. (TEXONO Collaboration), Limits on spinindependent couplings of WIMP dark matter with a P type point-contact Germanium Detector, Phys. Rev. Lett. 110, 261301 (2013)
|
59 |
Q. Yue, et al.. (CDEX Collaboration), Limits on light weakly interacting massive particles from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jinping underground laboratory, Phys. Rev. D 90(9), 091701 (2014)
|
60 |
L. T. Yang, et al.. (CDEX Collaboration), Limits on light WIMPs with a 1 kg-scale Germanium detector at 160 eVee physics threshold at the China Jinping underground laboratory, Chin. Phys. C 42(2), 023002 (2018)
|
61 |
W. Zhao, et al.. (CDEX Collaboration), Search of lowmass WIMPs with a P-type point contact Germanium detector in the CDEX-1 experiment, Phys. Rev. D 93, 092003 (2016)
|
62 |
C. E. Aalseth, et al.. (CoGeNT Collaboration), Search for an annual modulation in three years of CoGeNT dark matter detector data, arXiv: 1401.3295 (2014)
|
63 |
L. T. Yang, et al.. (CDEX Collaboration), Search for light weakly-interacting-massive-particle dark matter by annual modulation analysis with a point-contact germanium detector at the China Jinping underground laboratory, Phys. Rev. Lett. 123(22), 221301 (2019)
|
64 |
M. Kobayashi, et al.. (XMASS Collaboration), Search for sub-GeV dark matter by annual modulation using XMASS-I detector, Phys. Lett. B 795, 308 (2019)
|
65 |
M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, Migdal effect in dark matter direct detection experiments, J. High Energy Phys. 2018(3), 194 (2018)
https://doi.org/10.1007/JHEP03(2018)194
|
66 |
R. Agnese, et al.. (SuperCDMS Collaboration), Low-mass dark matter search with CDMSlite, Phys. Rev. D 97(2), 022002 (2018)
|
67 |
H. Jiang, et al.. (CDEX Collaboration), Limits on light weakly interacting massive particles from the first 102.8 kg × day data of the CDEX-10 experiment, Phys. Rev. Lett. 120(24), 241301 (2018)
|
68 |
E. Armengaud, et al.. (EDELWEISS Collaboration), Searching for low-mass dark matter particles with a massive Ge bolometer operated above ground, Phys. Rev. D 99(8), 082003 (2019)
https://doi.org/10.1103/PhysRevD.99.082003
|
69 |
Z. Z. Liu, et al.. (CDEX Collaboration), Constraints on spin-independent nucleus scattering with sub-GeV weakly interacting massive particle dark matter from the CDEX- 1B experiment at the China Jinping underground laboratory, Phys. Rev. Lett. 123(16), 161301 (2019)
|
70 |
S. K. Liu, et al.. (CDEX Collaboration), Constraints on axion couplings from the CDEX-1 experiment at the China Jinping underground laboratory, Phys. Rev. D 95(5), 052006 (2017)
|
71 |
Y. Wang, et al.. (CDEX Collabration), Improved limits on solar axions and bosonic dark matter from the CDEX- 1B experiment using the profile likelihood ratio method, Phys. Rev. D 101(5), 052003 (2020)
|
72 |
W. Li, et al.. (CDEX Collaboration), The first result on 76Ge neutrinoless double beta decay from CDEX-1 experiment, Sci. China Phys. Mech. Astron. 60, 071011 (2017)
|
73 |
Z. She, et al.. (CDEX Collaboration), Direct detection constraints on dark photon with CDEX-10 experiment at CJPL, arXiv: 1910.13234 (accepted by Phys. Rev. Lett. on Feb. 26, (2020)
|
74 |
O. Adriani, et al.. (PAMELA Collaboration), The cosmicray electron flux measured by the PAMELA experiment between 1 and 625 GeV, Phys. Rev. Lett. 106, 201101 (2011)
|
75 |
S. Abdollahi, et al.. (Fermi-LAT Collaboration), Cosmicray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi large area telescope, Phys. Rev. D 95, 082007 (2017)
|
76 |
M. Aguilar, et al.. (AMS Collaboration), Precision measurement of the (e+ + e–) flux in primary cosmic rays from 0.5 GeV to 1 TeV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 113, 221102 (2014)
|
77 |
O. Adriani, et al.. (CALET Collaboration), Energy spectrum of cosmic-ray electron and positron from 10 GeV to 3 TeV observed with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 119(18), 181101 (2017)
|
78 |
E. S. Seo, et al.. (CREAM Collaboration), Cosmic ray energetics and mass for the international space station (ISS-CREAM), Adv. Space Res. 53(10), 1451 (2014)
https://doi.org/10.1016/j.asr.2014.01.013
|
79 |
O. A. Driani, et al.. (PAMELA Collaboration), An anomalous positron abundance in cosmic rays with energies 1.5– 100 GeV, Nature 458, 07942 (2009)
|
80 |
J. Chang, et al.. (DAMPE Collaboration), The dark matter particle explorer mission, Astropart. Phys. 95, 6 (2017)
|
81 |
G. Ambrosi, et al.. (DAMPE Collaboration), Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552(7683), 63 (2017)
https://doi.org/10.1038/nature24475
|
82 |
Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, A model explaining neutrino masses and the DAMPE cosmic ray electron excess, Phys. Lett. B 781, 83 (2018)
https://doi.org/10.1016/j.physletb.2018.03.066
|
83 |
P. H. Gu and X. G. He, Electrophilic dark matter with dark photon: From DAMPE to direct detection, Phys. Lett. B 778, 292 (2018)
https://doi.org/10.1016/j.physletb.2018.01.057
|
84 |
P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, Modelindependent analysis of the DAMPE excess, J. High Energy Phys. 2018(2), 121 (2018)
https://doi.org/10.1007/JHEP02(2018)121
|
85 |
T. Li, N. Okada, and Q. Shafi, Scalar dark matter, typeII seesaw and the DAMPE cosmic ray e+e– excess, Phys. Lett. B 779, 130 (2018)
https://doi.org/10.1016/j.physletb.2018.02.006
|
86 |
G. Liu, F. Wang, W. Wang, and J. M. Yang, Explaining DAMPe results by dark matter with hierarchical leptonspecific Yukawa interactions, Chin. Phys. C 42(3), 035101 (2018)
https://doi.org/10.1088/1674-1137/42/3/035101
|
87 |
S. Ge, H. J. He, and Y. C. Wang, Flavor structure of the cosmic-ray electron/positron excesses at DAMPE, Phys. Lett. B 781, 88 (2018)
https://doi.org/10.1016/j.physletb.2018.03.065
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|