Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (5) : 52503    https://doi.org/10.1007/s11467-020-0984-2
RESEARCH ARTICLE
Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency
Jing-Min Ru1, Zhen-Kun Wu2(), Ya-Gang Zhang1, Feng Wen3(), Yu-Zong Gu1
1. Institute of Nano/Photon Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China
2. National Demonstration Center for Experimental Physics and Electronics Education, School of Physics and Electronics, Henan University, Kaifeng 475004, China
3. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Lab of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(2337 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subject. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial difference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.

Keywords multilevel atomic configuration      nonparaxial self-accelerating beam      Talbot effect      electromagnetically induced transparency     
Corresponding Author(s): Zhen-Kun Wu,Feng Wen   
Just Accepted Date: 17 August 2020   Issue Date: 08 September 2020
 Cite this article:   
Jing-Min Ru,Zhen-Kun Wu,Ya-Gang Zhang, et al. Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency[J]. Front. Phys. , 2020, 15(5): 52503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0984-2
https://academic.hep.com.cn/fop/EN/Y2020/V15/I5/52503
1 S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
https://doi.org/10.1063/1.881806
2 M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
https://doi.org/10.1103/RevModPhys.77.633
3 M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett. 82(9), 1847 (1999)
https://doi.org/10.1103/PhysRevLett.82.1847
4 H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A 70(6), 061804 (2004)
https://doi.org/10.1103/PhysRevA.70.061804
5 L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, and L. Ma, Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing, Appl. Phys. Lett. 114(5), 051104 (2019)
https://doi.org/10.1063/1.5082660
6 Y. F. Zhang, Z. P. Wang, J. Qiu, Y. Hong, and B. L. Yu, Spatially dependent four-wave mixing in semiconductor quantum wells, Appl. Phys. Lett. 115(17), 171905 (2019)
https://doi.org/10.1063/1.5121275
7 P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett. 20(9), 982 (1995)
https://doi.org/10.1364/OL.20.000982
8 M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett. 77(21), 4326 (1996)
https://doi.org/10.1103/PhysRevLett.77.4326
9 Y. P. Zhang, A. W. Brown, and M. Xiao, Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows, Phys. Rev. Lett. 99(12), 123603 (2007)
https://doi.org/10.1103/PhysRevLett.99.123603
10 Y. Q. Zhang, Z. K. Wu, X. Yao, Z. Y. Zhang, H. X. Chen, H. B. Zhang, and Y. P. Zhang, Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media, Opt. Express 21(24), 29338 (2013)
https://doi.org/10.1364/OE.21.029338
11 Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. L. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)
https://doi.org/10.1038/s41467-020-15635-9
12 Y. Q. Zhang, Z. K. Wu, M. R. Belić, H. B. Zheng, Z. G. Wang, M. Xiao, and Y. P. Zhang, Photonic Floquet topological insulators in atomic ensembles, Laser Photon Rev. 9(3), 331 (2015)
https://doi.org/10.1002/lpor.201400428
13 C. Hang, G. Huang, and V. V. Konotop, PT symmetry with a system of three-level atoms, Phys. Rev. Lett. 110(8), 083604 (2013)
https://doi.org/10.1103/PhysRevLett.110.083604
14 P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)
https://doi.org/10.1038/nphys3842
15 Z. Y. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, Observation of parity–time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
https://doi.org/10.1103/PhysRevLett.117.123601
16 Y. Q. Zhang, D. Zhang, Z. Y. Zhang, C. B. Li, Y. P. Zhang, F. L. Li, M. R. Belić, and M. Xiao, Optical Bloch oscillation and Zener tunneling in an atomic system, Optica 4(5), 571 (2017)
https://doi.org/10.1364/OPTICA.4.000571
17 D. Wei, Y. Yu, M. T. Cao, L. Y. Zhang, F. J. Ye, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, Generation of Airy beams by four-wave mixing in Rubidium vapor cell, Opt. Lett. 39(15), 4557 (2014)
https://doi.org/10.1364/OL.39.004557
18 H. Zhong, Y. Q. Zhang, Z. Y. Zhang, C. B. Li, D. Zhang, Y. P. Zhang, and M. R. Belić, Nonparaxial selfaccelerating beams in an atomic vapor with electromagnetically induced transparency, Opt. Lett. 41(24), 5644 (2016)
https://doi.org/10.1364/OL.41.005644
19 H. F. Talbot, Facts relating to optical science, Philos. Mag. 9, 401 (1836)
https://doi.org/10.1080/14786443608649032
20 L. Rayleigh, On copying diffraction-gratings, and on some phenomena connected therewith, Philos. Mag. 11(67), 196 (1881)
https://doi.org/10.1080/14786448108626995
21 J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, Electromagnetically induced Talbot effect, Appl. Phys. Lett. 98(8), 081108 (2011)
https://doi.org/10.1063/1.3559610
22 Y. Q. Zhang, X. Yao, C. Z. Yuan, P. Y. Li, J. M. Yuan, W. K. Feng, S. Q. Jia, and Y. P. Zhang, Controllable multiwave mixing Talbot effect, IEEE Photonics J. 4, 2957 (2012)
https://doi.org/10.1109/JPHOT.2012.2225609
23 Z. Y. Zhang, X. Liu, D. Zhang, J. T. Sheng, Y. Q. Zhang, Y. P. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)
https://doi.org/10.1103/PhysRevA.97.013603
24 R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Discrete Talbot effect in waveguide arrays, Phys. Rev. Lett. 95(5), 053902 (2005)
https://doi.org/10.1103/PhysRevLett.95.053902
25 H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, PT-symmetric Talbot effects, Phys. Rev. Lett. 109(3), 033902 (2012)
https://doi.org/10.1103/PhysRevLett.109.033902
26 C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, High-order quantum resonances observed in a periodically kicked Bose–Einstein condensate, Phys. Rev. Lett. 96(16), 160403 (2006)
https://doi.org/10.1103/PhysRevLett.96.160403
27 Y. Lumer, L. Drori, Y. Hazan, and M. Segev, Accelerating self-imaging: The Airy–Talbot effect, Phys. Rev. Lett. 115(1), 013901 (2015)
https://doi.org/10.1103/PhysRevLett.115.013901
28 Y. Q. Zhang, H. Zhong, M. R. Belić, X. Liu, W. P. Zhong, Y. P. Zhang, and M. Xiao, Dual accelerating Airy–Talbot recurrence effect, Opt. Lett. 40(24), 5742 (2015)
https://doi.org/10.1364/OL.40.005742
29 Y. Q. Zhang, H. Zhong, M. R. Belić, C. B. Li, Z. Y. Zhang, F. Wen, Y. P. Zhang, and M. Xiao, Fractional nonparaxial accelerating Talbot effect, Opt. Lett. 41(14), 3273 (2016)
https://doi.org/10.1364/OL.41.003273
30 Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, Nonlinear talbot effect, Phys. Rev. Lett. 104(18), 183901 (2010)
https://doi.org/10.1103/PhysRevLett.104.183901
31 T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, Talbot effect for exciton polaritons, Phys. Rev. Lett. 117(9), 097403 (2016)
https://doi.org/10.1103/PhysRevLett.117.097403
32 Y. Q. Zhang, M. R. Belić, H. B. Zheng, H. Chen, C. B. Li, J. P. Song, and Y. P. Zhang, Nonlinear Talbot effect from rogue waves, Phys. Rev. E 89(3), 032902 (2014)
https://doi.org/10.1103/PhysRevE.89.032902
33 Y. Q. Zhang, M. R. Belić, M. S. Petrović, H. B. Zheng, H. X. Chen, C. B. Li, K. Q. Lu, and Y. P. Zhang, Twodimensional linear and nonlinear Talbot effect from rogue waves, Phys. Rev. E 91(3), 032916 (2015)
https://doi.org/10.1103/PhysRevE.91.032916
34 K. Y. Zhan, Z. D. Yang, and B. Liu, Trajectory engineering of Airy–Talbot effect via dynamic linear potential, J. Opt. Soc. Am. B 35(12), 3044 (2018)
https://doi.org/10.1364/JOSAB.35.003044
35 K. Y. Zhan, J. Wang, R. Y. Jiao, Z. D. Yang, and B. Liu, self‐imaging effect based on circular airy beams, Ann. Phys. 531(11), 1900293 (2019)
https://doi.org/10.1002/andp.201900293
36 Y. Lumer, Y. Liang, R. Schley, I. Kaminer, E. Greenfield, D. H. Song, X. Z. Zhang, J. J. Xu, Z. G. Chen, and M. Segev, Incoherent self-accelerating beams, Optica 2(10), 886 (2015)
https://doi.org/10.1364/OPTICA.2.000886
37 Z. K. Wu and Y. Z. Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and finite-Energy airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402 (2016)
38 Z. K. Wu, Q. Zhang, H. Guo, and Y. Z. Gu, Microwavecontrolled airy beam propagation in multilevel atomic vapors, Optik 164, 465 (2018)
https://doi.org/10.1016/j.ijleo.2018.03.041
39 Z. K. Wu, Z. P. Wang, H. Guo, and Y. Z. Gu, Selfaccelerating Airy–Laguerre–Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium, Opt. Express 25(24), 30468 (2017)
https://doi.org/10.1364/OE.25.030468
40 D. A. Steck, (2000)
41 M. D. Lukin, and A. Imamoğlu, Controlling photons using electromagnetically induced transparency, Nature 413(6853), 273 (2001)
https://doi.org/10.1038/35095000
42 R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories, Nat. Commun. 5(1), 5189 (2014)
https://doi.org/10.1038/ncomms6189
43 I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Nondiffracting accelerating wave packets of Maxwell’s equations, Phys. Rev. Lett. 108(16), 163901 (2012)
https://doi.org/10.1103/PhysRevLett.108.163901
44 Z. K. Wu, H. Guo, W. Wang, and Y. Z. Gu, Evolution of finite energy Airy beams in cubic–quintic atomic vapor system, Front. Phys. 13(1), 134201 (2018)
https://doi.org/10.1007/s11467-017-0707-5
45 Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)
https://doi.org/10.1007/s11467-016-0613-2
[1] Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response[J]. Front. Phys. , 2020, 15(1): 12601-.
[2] Yun-Zhe Zhang (张云哲),Zhe Liu (刘哲),Kang-Ning Cai (蔡康宁),Hua Zhong (钟华),Wei-Tao Zhang (张卫涛),Jun-Feng Liu (刘俊锋),Yan-Peng Zhang (张彦鹏). Optical processes of photonic band gap structure with dressing field in atomic system[J]. Front. Phys. , 2016, 11(6): 114205-.
[3] Zhen-Kun Wu, Kai-Ge Chang, Yi Hu, Yun-Zhe Zhang, Zi-Hai Jiang, Yan-Peng Zhang. Modulation of four-wave mixing via photonic band gap[J]. Front. Phys. , 2014, 9(5): 665-670.
[4] Song-Song Li, Ji-Bing Yuan, Le-Man Kuang. Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency[J]. Front. Phys. , 2013, 8(1): 27-33.
[5] Tao LI (李涛), Hai-tao ZHOU (周海涛), Zhong-hua LI (李中华), Yun-fei BAI (白云飞), Yuan LI (李媛), Jiang-rui GAO (郜江瑞), Jun-xiang ZHANG (张俊香). Enhanced vacuum Rabi splitting and double dark states in a composite atom-cavity system[J]. Front Phys Chin, 2009, 4(2): 209-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed