|
|
Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response |
Zhao-Yang Shen1, He-Lin Yang1( ), Xuan Liu3, Xiao-Jun Huang2, Tian-Yu Xiang1,4, Jiong Wu1, Wei Chen1 |
1. College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China 2. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China 3. School of Computer and Information, China Three Gorges University, Yichang 443002, China 4. School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550000, China |
|
|
Abstract We demonstrated a novel metamaterial with dual-band electromagnetically induced transparency (EIT) via simulation, experiment and numerical analysis, with resonance frequencies of the transparency peaks of 7.60 and 10.27 GHz. The E–ε metamaterial unit cells were composed of E-shaped and ε-shaped patterns. By analyzing the surface current distribution and the magnetic field, we qualitatively verified the toroidal dipole response in the E–ε metamaterial at 10.27 GHz. Meanwhile, by calculating the multipole’s radiated power, we found that the two transparency peaks were due to the excitation of the electric and toroidal dipole responses. By changing the incident angle from 0° to 60°, we observed changes in transmission spectra, and the quality factors (Q-factors) of the two transparency peaks increased. In addition, the proposed E–ε metamaterial can be designed to act as a refractive index sensor or other electronic equipment for the control of electromagnetic waves.
|
Keywords
metamaterial
dual band electromagnetically induced transparency
toroidal dipole response
|
Corresponding Author(s):
He-Lin Yang
|
Issue Date: 22 November 2019
|
|
1 |
J. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China 5(3), 291 (2010)
https://doi.org/10.1007/s11467-010-0005-y
|
2 |
C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, Wire metamaterials: Physics and applications, Adv. Mater. 24(31), 4229 (2012)
https://doi.org/10.1002/adma.201200931
|
3 |
Z. Shen, H. Yang, X. Huang, and Z. Yu, Design of negative refractive index metamaterial with water droplets using, J. Opt. 19(11), 115101 (2017)
https://doi.org/10.1088/2040-8986/aa8a4c
|
4 |
H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. Au Kong, Left-handed materials composed of only S-shaped resonators, Phys. Rev. E 70(5), 057605 (2004)
https://doi.org/10.1103/PhysRevE.70.057605
|
5 |
Z. Shen, X. Huang, H. Yang, T. Xiang, C. Wang, Z. Yu, and J. Wu, An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water, J. Appl. Phys. 123(22), 225106 (2018)
https://doi.org/10.1063/1.5024319
|
6 |
G. Y. Song, W. X. Jiang, Q. Cheng, L. T. Wu, H. Y. Dong, and T. J. Cui, Acoustic magnifying lens for far-field high resolution imaging based on transformation acoustics, Adv. Mater. Technol. 2(9), 1700089 (2017)
https://doi.org/10.1002/admt.201700089
|
7 |
Z. L. Mei and T. J. Cui, Transparent shells-invisible to electromagnetic waves, Prog. Electromagn. Res. B 18, 149 (2009)
https://doi.org/10.2528/PIERB09082805
|
8 |
S. Sui, H. Ma, J. Wang, Y. Pang, and S. Qu, Topology optimization design of a lightweight ultra-broadband wideangle resistance frequency selective surface absorber, J. Phys. D Appl. Phys. 48(21), 215101 (2015)
https://doi.org/10.1088/0022-3727/48/21/215101
|
9 |
J. Wu, P. Wang, X. J. Huang, F. Rao, X. Y. Chen, Z. Y. Shen, and H. L. Yang, Design and validation of liquid permittivity sensor based on RCRR microstrip metamaterial, Sens. Actuators A Phys. 280, 222 (2018)
https://doi.org/10.1016/j.sna.2018.07.037
|
10 |
M. Kraft, Y. Luo, S. A. Maier, and J. B. Pendry, Designing plasmonic gratings with transformation optics, Phys. Rev. X 5(3), 031029 (2015)
https://doi.org/10.1103/PhysRevX.5.031029
|
11 |
Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding, ACS Nano 6(7), 6492 (2012)
https://doi.org/10.1021/nn3022684
|
12 |
Y. Y. Fu, Y. D. Xu, and H. Y. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)
https://doi.org/10.1007/s11467-018-0781-3
|
13 |
K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, Toroidal metamaterial, New J. Phys. 9(9), 324 (2007)
https://doi.org/10.1088/1367-2630/9/9/324
|
14 |
I. B. Zel’dovich, Electromagnetic interaction with parity violation,Sov. J. Exp. Theor. Phys. 6, 1184 (1958)
|
15 |
A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, and E. N. Economou, Extremely high Q-factor metamaterials due to anapole excitation, Phys. Rev. B 95(3), 035104 (2017)
https://doi.org/10.1103/PhysRevB.95.035104
|
16 |
H. Jiang, W. Zhao, and Y. Jiang, Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet, Opt. Mater. Express 7(12), 4277 (2017)
https://doi.org/10.1364/OME.7.004277
|
17 |
N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, Electromagnetic toroidal excitations in matter and free space, Nat. Mater. 15(3), 263 (2016)
https://doi.org/10.1038/nmat4563
|
18 |
T. Xiang, T. Lei, S. Hu, J. Chen, X. Huang, and H. Yang, Resonance transparency with low-loss in toroidal planar metamaterial, J. Appl. Phys. 123(9), 095104 (2018)
https://doi.org/10.1063/1.4993119
|
19 |
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
https://doi.org/10.1007/s11467-013-0288-x
|
20 |
M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, Tailoring mode interference in plasmon-induced transparency metamaterials, J. Phys. D Appl. Phys. 51(17), 174005 (2018)
https://doi.org/10.1088/1361-6463/aab6fb
|
21 |
J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, Electromagnetically induced transparency in metamaterials at near-infrared frequency, Opt. Express 18(16), 17187 (2010)
https://doi.org/10.1364/OE.18.017187
|
22 |
W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles, Adv. Mater. 28(14), 2709 (2016)
https://doi.org/10.1002/adma.201504478
|
23 |
Z. Y. Shen, T. Y. Xiang, J. Wu, Z. T. Yu, and H. L. Yang, Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial, J. Magn. Magn. Mater. 476, 69 (2019)
https://doi.org/10.1016/j.jmmm.2018.12.069
|
24 |
T. Liu, H. Wang, Y. Liu, L. Xiao, C. Zhou, Y. Liu, C. Xu, and S. Xiao, Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal – graphene metamaterial, J. Phys. D Appl. Phys. 51(41), 415105 (2018)
https://doi.org/10.1088/1361-6463/aadb7f
|
25 |
Z. Y. Shen, T. Y. Xiang, N. Wu, J. Wu, Y. Tian, and H. L. Yang, Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials, J. Phys. D Appl. Phys. 52(1), 015003 (2019)
https://doi.org/10.1088/1361-6463/aae672
|
26 |
S. Hu, D. Liu, and H. L. Yang, Electromagnetically induced transparency in an integrated metasurface based on bright-dark-bright mode coupling, J. Phys. D Appl. Phys. 52(17), 175305 (2019)
https://doi.org/10.1088/1361-6463/ab03c3
|
27 |
J. Zhang and A. Zayats, Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures, Opt. Express 21(7), 8426 (2013)
https://doi.org/10.1364/OE.21.008426
|
28 |
V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, Resonant transparency and nontrivial non-radiating excitations in toroidal metamaterials, Sci. Rep. 3(1), 2967 (2013)
https://doi.org/10.1038/srep02967
|
29 |
L. Y. Guo, M. H. Li, X. J. Huang, and H. L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion, Appl. Phys. Lett. 105(3), 033507 (2014)
https://doi.org/10.1063/1.4891643
|
30 |
S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials, Ann. Phys. 528(5), 352 (2016)
https://doi.org/10.1002/andp.201600016
|
31 |
M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, Sharp toroidal resonances in planar terahertz metasurfaces, Adv. Mater. 28(37), 8206 (2016)
https://doi.org/10.1002/adma.201601611
|
32 |
L. Zhu, L. Dong, J. Guo, F. Meng, J. He, C. H. Zhao, and Q. Wu, A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles, RSC Advances 7(88), 55897 (2017)
https://doi.org/10.1039/C7RA11175D
|
33 |
L. Cong, V. Savinov, Y. K. Srivastava, S. Han, and R. Singh, A metamaterial analog of the Ising model, Adv. Mater. 30(40), 1804210 (2018)
https://doi.org/10.1002/adma.201804210
|
34 |
M. Gupta, Y. K. Srivastava, and R. Singh, A toroidal metamaterial switch, Adv. Mater. 30(4), 1704845 (2018)
https://doi.org/10.1002/adma.201704845
|
35 |
Y. Tian, S. Hu, X. J. Huang, Z. T. Yu, H. Lin, and H. L. Yang, Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing, J. Phys. D Appl. Phys. 50(40), 405105 (2017)
https://doi.org/10.1088/1361-6463/aa865b
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|