Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (3) : 277-290    https://doi.org/10.1007/s11467-010-0101-z
Research articles
Hybridization effect in coupled metamaterials
Hui LIU(刘辉),Tao LI(李涛),Shu-ming WANG(王漱明),Shi-ning ZHU(祝世宁),
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China;
 Download: PDF(736 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Although the invention of the metamaterials has stimulated the interest of many researchers and possesses many important applications, the basic design idea is very simple: composing effective media from many small structured elements and controlling its artificial EM properties. According to the effective-media model, the coupling interactions between the elements in metamaterials are somewhat ignored; therefore, the effective properties of metamaterials can be viewed as the “averaged effect” of the resonance property of the individual elements. However, the coupling interaction between elements should always exist when they are arranged into metamaterials. Sometimes, especially when the elements are very close, this coupling effect is not negligible and will have a substantial effect on the metamaterials’ properties. In recent years, it has been shown that the interaction between resonance elements in metamaterials could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of these recent developments in coupled metamaterials. For the “metamolecule” composed of several identical resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a “metacrystal” comprising an infinite number of resonators, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable coupled metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future.
Keywords metamaterial      plasmon      negative refraction      hybridization effect      
Issue Date: 05 September 2010
 Cite this article:   
Hui LIU(刘辉),Shu-ming WANG(王漱明),Tao LI(李涛), et al. Hybridization effect in coupled metamaterials[J]. Front. Phys. , 2010, 5(3): 277-290.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-010-0101-z
https://academic.hep.com.cn/fop/EN/Y2010/V5/I3/277
V. G. Veselago, Sov. Phys. USPEKHI, 1968, 10: 509

doi: 10.1070/PU1968v010n04ABEH003699
J. Brown, Proc. IEE, 1953, 100C: 51
W. Rotman, IEEE Trans. Antennas Propag., 1962, 10: 82

doi: 10.1109/TAP.1962.1137809
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett., 1996, 76: 4773

doi: 10.1103/PhysRevLett.76.4773
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech., 1999, 47: 2075

doi: 10.1109/22.798002
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett., 2000, 84: 4184

doi: 10.1103/PhysRevLett.84.4184
R. A. Shelby, D. R. Smith, and S. Schultz, Science, 2001, 292: 77

doi: 10.1126/science.1058847
J. B. Pendry, Phys. Rev. Lett., 2000, 85: 3966

doi: 10.1103/PhysRevLett.85.3966
N. Fang, H. Lee, C. Sun, and X. Zhang, Science, 2005, 308: 534

doi: 10.1126/science.1108759
Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science, 2007, 315: 1686

doi: 10.1126/science.1137368
X. Zhang and Z. W. Liu, Nature Materials, 2008, 7: 435

doi: 10.1038/nmat2141
M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, Science, 2001, 291: 849

doi: 10.1126/science.291.5505.849
M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, Opt. Express, 2003, 11: 709

doi: 10.1364/OE.11.000709
T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science, 2004, 303: 1494

doi: 10.1126/science.1094025
S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Science, 2004, 306: 1351

doi: 10.1126/science.1105371
C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett., 2005, 95: 203901

doi: 10.1103/PhysRevLett.95.203901
Y. Svirko, N. Zheludev, and M. Osipov, Appl. Phys. Lett., 2001, 78: 498

doi: 10.1063/1.1342210
V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear Opt. Phys.Mater., 2002, 11: 65

doi: 10.1142/S0218863502000833
V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A.K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett., 2005, 30: 3356

doi: 10.1364/OL.30.003356
S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett., 2005, 95: 137404

doi: 10.1103/PhysRevLett.95.137404
J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Science, 2008, 321: 930

doi: 10.1126/science.1157566
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature, 2008, 455: 376

doi: 10.1038/nature07247
J. B. Pendry, Contemporary Physics, 2004, 45: 191

doi: 10.1080/00107510410001667434
J. B. Pendry, Nature Materials, 2006, 5: 599

doi: 10.1038/nmat1697
V. M. Shalaev, Nature Photonics, 2007, 1: 41

doi: 10.1038/nphoton.2006.49
C. M. Soukoulis, S. Linden, and M. Wegener, Science, 2007, 315: 47

doi: 10.1126/science.1136481
V. G. Veselago and E. E. Narimanov, Nature Materials, 2006, 5: 759

doi: 10.1038/nmat1746
J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312: 1780

doi: 10.1126/science.1125907
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, 2006, 314: 977

doi: 10.1126/science.1133628
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science, 2009, 323: 366

doi: 10.1126/science.1166949
J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nature Materials, 2009, 8: 568

doi: 10.1038/nmat2461
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science, 2003, 302: 419

doi: 10.1126/science.1089171
E. Prodan and P. Nordlander, J. Chem. Phys., 2004, 120: 5444

doi: 10.1063/1.1647518
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett., 2004, 4: 899

doi: 10.1021/nl049681c
D. W. Brandl, C. Oubre, and P. Nordlander, J. Chem. Phys., 2005, 123: 024701

doi: 10.1063/1.1949169
C. Oubre and P. Nordlander, J. Chem. Phys. B, 2005, 109: 10042

doi: 10.1021/jp044382x
P. Nordlander and E. Prodan, Nano Lett., 2004, 4: 2209

doi: 10.1021/nl0486160
H. Liu, D. A. Genov, D. M.Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. B, 2007, 76: 073101

doi: 10.1103/PhysRevB.76.073101
T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett., 2008, 92: 131111

doi: 10.1063/1.2905285
T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, Phys. Rev. B, 2009, 80: 115113

doi: 10.1103/PhysRevB.80.115113
N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nature Photonics, 2009, 3: 157

doi: 10.1038/nphoton.2009.4
N. Liu, H. C. Guo, L.W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Materials, 2008, 7: 31

doi: 10.1038/nmat2072
H. C. Guo, N. Liu, L. W. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, Opt. Express, 2007, 15: 12095

doi: 10.1364/OE.15.012095
N. Liu, H. C. Guo, L.W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Adv. Mater., 2007, 19: 3628

doi: 10.1002/adma.200700123
F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, Phys. Rev. B, 2007, 76: 075110

doi: 10.1103/PhysRevB.76.075110
J. X. Cao, H. Liu, T. Li, S. M. Wang, T. Q. Li, S. N. Zhu, and X. Zhang, J. Opt. Soc. Am. B, 2009, 26: B96

doi: 10.1364/JOSAB.26.000B96
D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, Phys. Rev. B, 2008, 77: 214302

doi: 10.1103/PhysRevB.77.214302
M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett., 1998, 23: 1331

doi: 10.1364/OL.23.001331
M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B, 2000, 62: 16356

doi: 10.1103/PhysRevB.62.R16356
S. A. Maier, P. G. Kik, and H. A. Atwater, Phys. Rev. B, 2003, 67: 205402

doi: 10.1103/PhysRevB.67.205402
W. H. Weber and G. W. Ford, Phys. Rev. B, 2004, 70: 125429

doi: 10.1103/PhysRevB.70.125429
C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. E, 2005, 72: 066606

doi: 10.1103/PhysRevE.72.066606
A. F. Koenderink and A. Polman, Phys. Rev. B, 2006, 74: 033402

doi: 10.1103/PhysRevB.74.033402
J. D. Jackson, Classical Eletrodynamics, New York: Wiley, 1999
E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, J. Appl. Phys., 2002, 92: 6252

doi: 10.1063/1.1510945
M. J. Freire, R. Marques, F. Medina, M. A. G. Laso, and F. Martin, Appl. Phys. Lett., 2004, 85: 4439

doi: 10.1063/1.1814428
R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, J. Appl. Phys., 2005, 97: 064909

doi: 10.1063/1.1850182
I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, Physica B, 2007, 394: 180

doi: 10.1016/j.physb.2006.12.038
O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, Appl. Phys. Lett., 2005, 87: 072501

doi: 10.1063/1.2011789
O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, Phys. Rev. B, 2006, 73: 224406

doi: 10.1103/PhysRevB.73.224406
M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, Appl. Phys. Lett., 2006, 88: 2006

doi: 10.1063/1.2176850
F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, Phys. Stat. Sol. (B), 2007, 244: 1170

doi: 10.1002/pssb.200674501
R. R. A. Syms, E. Shamonina, and L. Solymar, IEE. Proc. Microw. Antennas Propag., 2006, 153: 111

doi: 10.1049/ip-map:20050119
I. S. Nefedov and S. A. Tretyakov, Microw. Opt. Tech.Lett., 2005, 45: 98

doi: 10.1002/mop.20735
R. R. A. Syms, L. Solymar, and I. R. Young, Metamaterials, 2008, 2: 122

doi: 10.1016/j.metmat.2008.03.003
M. J. Freire and R. Marques, Appl. Phys. Lett., 2005, 86: 182505

doi: 10.1063/1.1922074
O. Sydoruk, M. Shamonin, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, R. Trautner, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, J. Appl. Phys., 2007, 101: 073903

doi: 10.1063/1.2714782
H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. Lett., 2006, 97: 243902

doi: 10.1103/PhysRevLett.97.243902
T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, Opt. Express, 2009, 17: 11486

doi: 10.1364/OE.17.011486
J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett., 2005, 95: 223902

doi: 10.1103/PhysRevLett.95.223902
H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, Phys. Rev. B, 2009, 79: 024304

doi: 10.1103/PhysRevB.79.024304
S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, Opt. Express, 2008, 16: 3560

doi: 10.1364/OE.16.003560
S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett., 2008, 93: 233102

doi: 10.1063/1.3023064
D. R. Smith, P. Kolinko, and D. Schurig, J. Opt. Soc. Am. B, 2004, 21: 1032

doi: 10.1364/JOSAB.21.001032
A. B. Kozyrev, C. Qin, I. V. Shadrivov, Y. S. Kivshar, I. L. Chuang, and D. W. V. D. Weide, Opt. Express, 2007, 15: 11714

doi: 10.1364/OE.15.011714
R. R. A. Syms, E. Shamonina, and L. Solymar, Eur. Phys. J. B, 2005, 46: 301

doi: 10.1140/epjb/e2005-00253-9
O. Zhuromskyy, E. Shamonina, and L. Solymar, Opt. Express, 2005, 13: 9299

doi: 10.1364/OPEX.13.009299
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature, 1998, 391: 667

doi: 10.1038/35570
S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, Opt. Express, 2005, 13: 4922

doi: 10.1364/OPEX.13.004922
S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. O. Osgood, J. Opt. Soc. Am. B, 2006, 23: 434

doi: 10.1364/JOSAB.23.000434
G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett., 2006, 31: 1800

doi: 10.1364/OL.31.001800
G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science, 2006, 312: 892

doi: 10.1126/science.1126021
G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett., 2007, 32: 53

doi: 10.1364/OL.32.000053
S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, Opt. Express, 2006, 14: 6778

doi: 10.1364/OE.14.006778
T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, Opt. Express, 2006, 14: 11155

doi: 10.1364/OE.14.011155
G. Dolling, M. Wegener, A. Schadle, S. Burger, and S. Linden, Appl. Phys. Lett., 2006, 89: 231118

doi: 10.1063/1.2403905
T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, Appl. Phys. Lett., 2007, 90: 251112

doi: 10.1063/1.2750394
T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, J. Appl. Phys., 2008, 103: 023104

doi: 10.1063/1.2828178
A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. Lett., 2008, 101: 103902

doi: 10.1103/PhysRevLett.101.103902
R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, Phys. Rev. B, 2009, 79: 079425

doi: 10.1103/PhysRevB.79.075425
C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, Opt. Lett., 2009, 34: 1603

doi: 10.1364/OL.34.001603
A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B, 2009, 80: 165431

doi: 10.1103/PhysRevB.80.165431
T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, Phys. Rev. E, 2007, 76: 016606

doi: 10.1103/PhysRevE.76.016606
M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science, 2006, 313: 502

doi: 10.1126/science.1129198
N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, Opt. Lett., 2008, 33: 1975

doi: 10.1364/OL.33.001975
A. K. Sarychev and G. Tartakovsky, Phys. Rev. B, 2007, 75: 085436

doi: 10.1103/PhysRevB.75.085436
Z. H. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, W. M. Ye, X. D. Yuan, and S. N. Zhu, Appl. Phys. Lett., 2009, 94: 103106

doi: 10.1063/1.3095437
N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, Nature Photonics, 2008, 2: 351

doi: 10.1038/nphoton.2008.82
Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, Opt. Express, 2008, 16: 20974

doi: 10.1364/OE.16.020974
Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, Phys. Rev. B, 2009, 80: 235116

doi: 10.1103/PhysRevB.80.235116
[1] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[2] Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces[J]. Front. Phys. , 2020, 15(6): 62502-.
[3] Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response[J]. Front. Phys. , 2020, 15(1): 12601-.
[4] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[5] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[6] Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials[J]. Front. Phys. , 2018, 13(4): 134206-.
[7] Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system[J]. Front. Phys. , 2017, 12(5): 125201-.
[8] Arthur Losquin,Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics[J]. Front. Phys. , 2017, 12(1): 127301-.
[9] Yun-Xia Dong,Jing-Jiang You. Propagation of polarized photons through a cavity with an anisotropic metamaterial[J]. Front. Phys. , 2016, 11(6): 114208-.
[10] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[11] Li-Hua Qian,Li-Zhi Yi,Gui-Sheng Wang,Chao Zhang,Song-Liu Yuan. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays[J]. Front. Phys. , 2016, 11(2): 115204-.
[12] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[13] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[14] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
[15] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed